

Ultimate Guide to Drupal 8
Revised and updated for Drupal 8.2, as of October, 2016
Angela Byron, Director, Community Development, Acquia
Jeffrey A. “jam” McGuire, Evangelist, Developer Relations, Acquia

Table of Contents
Introduction 2

Authoring Experience 4

Mobile Improvements 7

Multilingual++ 9

Front-end Developer Improvements 17

Back-end Developer Improvements 24

Better, Right Down to the Core 30

Your Burning Questions 40

1 Acquia.com | 888.922.7842

Introduction

Drupal 8 has a lot in store for you, whatever you do with Drupal. This ebook will enumerate the major changes, features, and

updates in Drupal 8 – and specifically Drupal 8.2 – for service providers and end users, site builders, designers, theme- and

front-end developers, and for module and back-end developers.

The Drupal community has moved to support innovation within major releases with a new “semantic versioning” release system.

Starting with Drupal 8, a new “minor” version will be released every six months–Drupal 8.0.x, 8.1.x, 8.2.x, and so on, which can

include backwards-compatible new features and functional improvements (which was not possible in Drupal 7 and below). This

is alongside the expected bug fix, “patch” releases between minor versions; for example, Drupal 8.1.1, 8.1.2, and so on.

To further accelerate the pace of innovation, Drupal 8 includes “experimental” core modules alongside the semantic versioning

concept. While these modules don’t necessarily conform to the rigorous requirements for “full” Drupal core modules, they allow

core contributors to iterate quickly and get real-world feedback on important new functionality that may be fully supported in

future versions of Drupal 8. Experimental core modules must become full modules within a year of their introduction (two minor

releases) or be removed from core again. Drupal 8.2 includes 9 experimental core modules: “beta-stable” BigPipe, and

“alpha-stable” Migrate, Migrate Drupal, Drupal Upgrade UI, Inline Form Errors, Place Block, Content Moderation, Settings Tray,

and DateTime range.

While the focus of this ebook is firmly on Drupal 8 and the improvements in Drupal 8.2, for those familiar with Drupal 7.x, it

includes some comparisons to Drupal 7 functionality and references to Drupal 7 equivalents of Drupal 8 features–for example,

Drupal 7 contributed modules.

2 Acquia.com | 888.922.7842

https://www.drupal.org/core/experimental

Angela Byron is an open source evangelist whose work includes reviewing and committing

Drupal core patches, supporting community contributors, coordinating with the Drupal.org

infrastructure team, and evangelizing Drupal. She is also a Drupal 8 core committer. Angela is

the lead author of O’Reilly’s first Drupal book, entitled Using Drupal. Angie is known as

“webchick” on drupal.org.

Jeffrey A. “jam” McGuire — Evangelist, Developer Relations at Acquia — is a memorable and

charismatic communicator with a strong following at the intersection of open source software,

business, and culture. He is a frequent keynote speaker at events around the world. He writes

and talks about technology, community, and more on weekly podcasts and as a blogger on

dev.acquia.com.

3 Acquia.com | 888.922.7842

https://www.drupal.org/u/webchick
https://dev.acquia.com/

Authoring Experience
A major area of focus in developing Drupal 8 was around the out-of-the-box experience for content authors and editors—the

folks who actually use Drupal websites every day. Here are some of the changes you’ll see.

Spark
Spark is an Acquia initiative created by Dries Buytaert to improve Drupal core’s default authoring experience.

The Acquia development team for Drupal core analysed both proprietary and open source competitors to

Drupal and worked hard to make usability enhancements to Drupal core over the course of the release in

collaboration with other Drupal core contributors. They also created back ports of key Drupal 8 UX

improvements for Drupal 7, which allowed them to be tested and improved under everyday, real use even

before the release of Drupal 8.

WYSIWYG Editor
Drupal 8 ships with the CKEditor WYSIWYG editor in the default installation. In addition to supporting

what you’d expect in a WYSIWYG editor—buttons for bold, italic, images, links, and so on—it supports

extras, such as easily editable image captions, thanks to CKEditor’s new Widgets feature, developed

specifically for Drupal’s use. It is fully integrated into Drupal 8, from Drupal-styled dialogs, to utilizing

Drupal’s user roles and permissions, to image management, and it ensures that we keep the benefits of

Drupal’s structured content concepts in our WYSIWYG implementation.

Drupal 8 also sports a drag-and-drop admin interface for customising the WYSIWYG toolbar; adding

and removing buttons automatically syncs the allowed HTML tags for a given text format. Buttons are

contained in “button groups” with labels that are invisible to the naked eye, but that can be read by

screen readers, providing an accessible editing experience for visually impaired users. Though core will

only support CKEditor, Drupal 8’s Editor module wraps around the WYSIWYG integration, so other text

editors, libraries and contrib modules can be used and tightly integrated as well.

4 Acquia.com | 888.922.7842

http://buytaert.net/announcing-spark-authoring-improvements-for-drupal-7-and-drupal-8
https://www.drupal.org/project/spark
https://www.drupal.org/project/spark
http://ckeditor.com/
http://docs.ckeditor.com/#%21/guide/dev_widgets
http://wimleers.com/article/drupal-8-structured-content-authoring-experience
http://wimleers.com/article/drupal-8-structured-content-authoring-experience

In-place Editing
In Drupal 7, if you need to make a correction on a website—for example, a typo, or a missing

image—you must use a back-end form, which is visually separated from the front-end website

where content will appear. The Preview button doesn’t help, because the results of preview are

shown in the administrative theme (twice, in case you missed it the first time).

Drupal 8’s in-place editing feature allows editors to click into any field within a piece of content,

anywhere it appears on the front-end of the site and edit it right there, without ever visiting the

back-end editing form. Full node content, user profiles, custom blocks, and more are all editable

in-place as well.

To replace Drupal 7’s default editing behavior, which required a more time-consuming visit to the

administrative back-end of the site, this in-place editing feature has been backported to Drupal 7 as

the Quick Edit module.

Outside-in Usability!
Drupal 8.2 introduces a new-to-Drupal usability concept in two experimental core modules: “outside-in”, where configuration changes are made right from the

front-end of the website. The new Place Block module allows you to place blocks on any page without having to navigate to the backend administration form.

Block configuration has also become much easier with the experimental Settings Tray module. Selecting a block to edit opens a tray in a sidebar where you

can edit the block’s settings directly. You can configure menus that appear in menu blocks as well as change the site name and site slogan in-place. The

settings tray system is expected to be available for integration with other modules soon.

5 Acquia.com | 888.922.7842

https://www.drupal.org/project/quickedit
https://www.drupal.org/project/quickedit
https://www.drupal.org/project/quickedit
https://www.drupal.org/project/quickedit
https://www.drupal.org/project/quickedit

Redesigned Content Creation Page
A community-led effort from Drupal’s Usability team resulted in are designed

content creation page in Drupal 8. It contains two columns: one for the main fields

(the actual “content” part of your content) and another for the “extras”—optional

settings that are used less often.

The new design lets content authors focus on the task at hand while having

important publishing options just a click away.

Refreshed Admin Theme
The administrative theme in Drupal 8 is a visually refreshed version of Drupal 7’s,

based on a formal style guide which can also be used by module developers and

others concerned about backend usability.

Content Moderation
As part of the plan for incremental improvement throughout the Drupal 8 release cycle, Drupal 8.0.0 core included API support under the hood for a draft

revision-state to help integrate publishing-workflow modules, like Workbench. Drupal has always supported both published and unpublished content, but

more granular workflow support was not available in Drupal core. The new experimental Content Moderation module, based on the contributed Workbench

Moderation project and added to core in 8.2, allows defining content workflow states such as Draft, Archived, and Published, as well as which roles have the

ability to move content between states.

Automatic revision saving
Drupal now enables revisions by default for new content types. This is

important for systems-of-record and compliance, providing better

accountability, creating a "safety net" for recovering from unintended changes,

and for integrating with further future workflow features.

6 Acquia.com | 888.922.7842

https://groups.drupal.org/node/214898
https://groups.drupal.org/node/283223
https://www.drupal.org/project/workbench
https://www.drupal.org/project/workbench

Mobile Improvements

A huge amount of work has gone into making Drupal 8 “mobile friendly.” Drupal 8 is able to support site visitors’ needs as they

surf the web on their tablets and phones, as well as enabling authors and editors to actually work productively on their sites from

mobile devices.

Mobile First
Drupal 8 has been designed with mobile in mind, from the installer to the modules page. Even new features, such

as in-place editing, are designed to work on the smallest of screens. Give Drupal 8 a try on your device of choice,

and let us know what you think.

The new search box on the modules page adds to your Drupal-8-on-mobile experience by saving you a lot of scrolling

when you need to get to the settings for a particular module. Check out Module Filter for a similar experience in Drupal

7.

Responsive-ize ALL Things (Themes, Images, Tables…)
To support the unimaginable array of Internet-enabled devices coming in the next 5+ years, Drupal

8 incorporates responsive design into everything it does.

For starters, all core themes are now responsive and automatically reflow elements, such as menus

and blocks, to fit well on mobile devices (if the viewport is too narrow, horizontal elements will

switch to a vertical orientation instead). Images that show up large on a desktop shrink down to fit

on a tablet or smartphone, thanks to built-in support for responsive images.

Drupal 8 also provides support for responsive tables with table columns that can be declared with

high, medium, or low importance. On wide screens, all the columns show, but as the screen size

narrows, the less important columns start dropping off so everything fits nicely. This API is also

built into the Views module, so you can configure your own responsive admin screens.

7 Acquia.com | 888.922.7842

https://www.drupal.org/node/2152519
https://www.drupal.org/project/module_filter

The Responsive Bartik and Responsive Tables modules can make Drupal 7 behave similarly.

Numerous responsive base themes for Drupal 7, including Omega and Zen, can help you build a

responsive design for your website.

Mobile-friendly Toolbar
Drupal 8 sports a responsive administrative toolbar that automatically expands and orients itself

horizontally on wide screens and collapses down to icons and orients itself vertically on smaller

screens. Like all new front-end features in Drupal 8, this one was designed with accessibility in

mind. The toolbar allows screen-reader users to easily navigate to various parts of a site.

If you’re interested in this feature for Drupal 7, check out the Mobile Friendly Navigation Toolbar

module.

Front-end Performance
One of the biggest factors that can make or break the mobile experience is the raw performance

of a website. As a result, a lot of work went into minimizing Drupal 8’s front-end footprint. Page

loads were sped up by replacing jQuery with efficient, targeted, native JavaScript in many cases

and out-of-the-box Drupal 8 loads no JavaScript files at all for anonymous visitors. Drupal 8’s

caching is a big advance over Drupal 7’s. It includes entity caching and powerful, granular cache

tags which allow for targeted cache clearing so pages stay fast

longer. Drupal 8.1 also introduced BigPipe page delivery as an

“alpha-stability” experimental core module. It has been upgraded

to “beta-stability”in Drupal 8.2, meaning it is ready for use and

testing by early adopters, and the API is stable enough for

developers to begin using and extending it. See the Backend Developer Improvements chapter of this ebook for more on

caching and BigPipe’s effect on user experience thanks to faster perceived loading. Additionally, lighter-weight,

mobile-friendly alternatives replaced JavaScript-intensive features like the Overlay module. Drupal 8 uses a simple “Back to

site” link in the admin toolbar while in an administrative context. See Escape Admin for a Drupal 7 equivalent.

8 Acquia.com | 888.922.7842

https://drupal.org/project/responsive_bartik
https://drupal.org/project/responsive_tables
http://drupal.org/project/omega
http://drupal.org/project/zen
https://drupal.org/project/navbar
https://drupal.org/project/navbar
https://www.drupal.org/core/experimental
https://drupal.org/project/escape_admin

 Multilingual++
The Multilingual Initiative (D8MI), led by Acquia’s own Gábor Hojtsy with the participation of over 1,000 contributors, was a

major development focus for Drupal 8. Check out Gábor’s excellent Drupal 8 Multilingual Tidbits series if you’re interested in

all the details about D8MI.

Multilingual First
Drupal 8 is a CMS built from the ground up for multilingual use. You can perform your entire

site installation and setup in your language of choice. Right on the installer page, it

auto-detects your browser’s language and auto-selects that language for installation in the

drop-down for your convenience. When you install Drupal in any language other than

English (or later add a new language to your site), Drupal 8 automatically downloads the

latest interface translations from localize.drupal.org in your language, too. This works for

right-to-left languages, such as Arabic and Hebrew, too. Drupal’s interface translations are

dependent on local communities for accuracy and completeness, so some translations may

be missing some strings.

On localize.drupal.org, you can always contribute those yourself and help your language

community take advantage of Drupal. Drupal 8 does away with the previous Drupal-concept

of English as a “special” language. If you select a language other than English on

installation, the English option will no longer show in your site configuration unless explicitly

turned on. Also, you can make English itself “translatable” so that you can convert strings to

something more tailored to your users. For example, you can change “Log in / Log off” to

“Sign in / Sign off.”

9 Acquia.com | 888.922.7842

http://www.drupal8multilingual.org/
https://www.acquia.com/about-us/team/g-bor-hojtsy
http://www.drupal8multilingual.org/team
http://hojtsy.hu/multilingual-drupal8
https://localize.drupal.org/
https://localize.drupal.org/

Fewer Modules, Packing a Bigger Punch
Making a site multilingual in Drupal 8 requires nothing more than activating one or more of just

four modules, all shipped with Drupal 8 core. These four modules do everything and more than

the roughly 30 contributed modules and lots of tricky configuration needed to make a Drupal 7

site multilingual.

- Language provides Drupal 8’s underlying language support. It is the base module and is

required by the other multilingual modules.

- Configuration Translation makes things like blocks, menus, views, and so on, translatable.

- Content Translation makes things such as nodes, taxonomy terms, and comments

translatable.

- Interface Translation makes Drupal’s user interface itself translatable.

Why four modules and not just one, you ask? This granularity allows site builders to choose whatever combination of features meet their site’s specific use

case, without forcing them to deal with the parts they don’t need. For example, single-language, non-English sites are a valid use case, as are multilingual sites

that may or may not need their content translated (e.g. to keep user-generated content in its native language), as are a plethora of combinations of interface

languages and content translations for site admins, content authors, and end users.

Language Selection Everywhere
Everything from system configuration settings to site components, such as blocks,

views, and menus, to individual field values on content are translatable. For content

entities (comments, nodes, users, taxonomy terms, and so on), you have even more

options, like configuring the visibility of the language selector, and whether newly

created content defaults to the site’s default language, the content author’s preferred

language, or some other value.

10 Acquia.com | 888.922.7842

Streamlined Translation UIs
Drupal’s international community put a lot of effort into the user experience

of Drupal 8’s multilingual functionality. You’ll see well-integrated and

streamlined translation interfaces throughout Drupal 8.

Transliteration Support
One really handy addition to Drupal 8 is the inclusion of the Transliteration

module in core. It automatically converts special characters like “ç” and “ü”

to “c” and “u” for friendlier, more human-readable machine names, file

uploads, paths, and search results.

...And More!
Here are some extras for site builders that are worth mentioning:

- Several of the pages in core that are using Views allow for much easier language-based customization, especially the admin views, where adding

language filters, a language column, and so on, are easy to put together.

- The Drupal 8 core Content Translation module is well-integrated with Drupal 8‘s core search and the Search API can also access language information for

integration with search technologies like Apache Solr and Elasticsearch.

- The language selection system now supports one or more separate admin languages, for easier management of multilingual sites by site admins who

might speak different languages.

11 Acquia.com | 888.922.7842

 Site Builders FTW
Although the authoring experience improvements and mobile improvements in Drupal 8 tend to focus on end users and content

authors of Drupal websites, Drupal 8 also includes a huge push to improve the site building tools.

Views in Core!
The Views module, the most frequently used contributed module in Drupal,
is now part of Drupal 8 core and is more tightly integrated into Drupal then

ever before. Beyond providing a query-builder UI and serving up the

results in a variety of formats for site visitors, baking Views into Drupal core

allowed core developers to replace numerous previously hardcoded admin

pages with Views listings. This removed thousands of lines of boilerplate

code from Drupal core and more importantly, gives site builders the power

to customise most of the main administrative listings (or even build brand

new ones!). The Content, People, and Files admin pages, as well as

various sidebar blocks, several RSS feeds, and the default front page have

been converted to Views. Almost everyone who has built a site of any

complexity in Drupal knows how to use Views. This makes customizations

of these pages—for example to add a “Full name” search to the People

listing, or thumbnails next to items in the Content listing—just a few clicks

away. Everything you know and love from Views is included in Drupal 8

core—and even a few extras such as mobile-friendly administration, some

user experience and accessibility improvements, the ability to create

responsive table listings, and the ability to turn any listing into a REST

export that can be consumed by a mobile application or other external

service.

12 Acquia.com | 888.922.7842

https://www.drupal.org/project/usage

More and Better Blocks
In Drupal 8, you’ll notice a few new features as they relate to blocks. First, just like with Views replacing admin pages, several previously hard-coded site

components have been converted to blocks, including breadcrumbs, site name, and slogan. This makes it easier to adjust page organization in the user

interface, and enables in-place editing, and makes for easier theming.

Reusable Blocks and Custom Block Types
A nice addition to Drupal 8 is the ability to re-use blocks. You can place a block in multiple places, for example, a “Navigation” block in both the header and

footer.

And finally, you can now create custom block types, just as you can create

custom content types, to allow for granular control over different styling, different

fields, and more. This allows you to create, for example, an “Ad” block type with

an “Ad code” field that can contain JavaScript snippets from a remote ad service

and then add and place as many different blocks of that type on your site as you

need.

Improved and Expanded Entity and Field Features
Two of Drupal 7’s most powerful site builder features—Entities and Fields—have

been expanded in Drupal 8. Everything from content, to users,

comments, and much more are all entities. You can add fields to all entities,

including references to other entities. This makes it easier than ever to build data

models for the structured content you want to manage using Drupal.

More Field Types
To build those data models, Drupal 8.2 includes a plethora of fundamental,

semantic field types like Taxonomy, Image, Phone, Email, Link, and File, as

13 Acquia.com | 888.922.7842

well as some more powerful fields such as Entity Reference and Date Range. Even the setting for whether comments are open or closed has been moved

to a field, making any entity type commentable.

Form Modes
In addition to Drupal 7’s “view modes” feature, which allows creating multiple display options for content in different contexts (for example, showing a

thumbnail image on your content’s teaser view and a full-size image on the default view), Drupal 8 adds the notion of “form modes” to do the same for

data-entry forms. Here’s an example of configuring the user registration form differently from the user edit form, so you can hide the more esoteric fields

and provide a simpler user experience.

Take a Tour
Drupal 8’s new Tour module lets site builders create contextual,

step-by-step tooltip-style walkthroughs of your site. It can help with

overviews of administrative interfaces, introduce new terminology, and walk

through the steps involved in configuring components of your site.

Both Less and More, Module-wise
You’ll find Drupal 8 missing some modules that shipped with Drupal 7,

14 Acquia.com | 888.922.7842

namely Blog, Dashboard, Open ID, Overlay, PHP filter, Poll, Profile, and

Trigger (as well as the Garland theme). You’ll find several new modules in

which functionality has been split out into more granular chunks, such as

Menu Links/Menu UI, Block/Custom Block, Ban/History/Actions (formally

baked into User/Node/System module), and so on.

Heather James’s “Drupal 8 Site Building Preview—Less Is More” has a great

rundown of the state of modules, including contrib modules that are now

rendered obsolete due to the functionality that ships with Drupal 8 core.

The bottom line: Drupal 8 core ships with enough functionality

out-of-the-box that site builders can create fairly sophisticated sites without

having to install a plethora of contributed modules.

Migration Path
Drupal’s major version upgrade path has been replaced with a migration

path, courtesy of a D8 port of the Migrate and Migrate Drupal-to-Drupal

modules. Since Drupal 8.1, there is also a Migration UI in core, which

allows major Drupal version migrations without resorting to command-line

tools. Both a migration path from Drupal 6 (already in Drupal 8.x) and

Drupal 7 (partially in 8.x and under development) are supported. The

migration path allows you to keep your Drupal 6/7 site running while you

build your new Drupal 8 site, greatly minimizing downtime over the old

15 Acquia.com | 888.922.7842

https://www.acquia.com/blog/tutorial-drupal-8-site-building-preview-less-more
https://www.drupal.org/project/migrate
https://www.drupal.org/project/migrate_d2d

update.php method.

For more on Drupal 8’s improved major version upgrade process, check out

Moshe Weitzman’s “Drupal 8—Improved Upgrade Process” blog from

December 2013.

Front-end Developer Improvements
Drupal 8 contains a lot of improvements for front-end developers, including HTML5, additional helper libraries, accessibility

enhancements, new themes and UI elements, and faster performance, to name a few.

HTML5
All of Drupal’s output has been converted to use semantic HTML5 markup by default, as part of an overarching effort to clean up Drupal’s default markup.

This means you’ll find tags such as <nav>, <header>,<main>, and <section> in Drupal’s default templates and you’ll find HTML5/CSS3 replacements for

several things that previously needed custom workarounds: resizing on text areas and first/last/odd/ even classes is now covered by CSS3

16 Acquia.com | 888.922.7842

https://dev.acquia.com/blog/drupal-8-improved-upgrade-process

pseudo-selectors; and collapsible fieldsets largely replaced by the by the <details> element.

HTML5 also brings new form input types, such as date, tel, and email, that can provide targeted user interfaces on mobile devices (for example, only showing

the number pad when entering phone numbers) to help streamline data entry. Drupal’s Form API provides these additional types so you can easily create

these new types of fields. The Drupal 7 equivalent can be found in the Elements module.

New Front-end Libraries and Helpers
Drupal has shipped with jQuery since Drupal 5 and jQuery UI since Drupal 7. Drupal

8 brings with it an update to the latest version of jQuery and an expanded array of

front-end libraries. Together, these additional libraries allow for creating

mobile-friendly, rich front-end applications in Drupal, and they’re used by several of

the Authoring Experience and Mobile feature improvements to Drupal 8. These

include:

- Modernizr (detects if a browser supports touch or HTML5/

CSS3 features)

- Underscore.js (a lightweight JS-helper library)

- Backbone.js (a model-view-controller JavaScript framework).

Native Schema.Org Output

In a great boon for search-engine optimization, Drupal 8’s RDFa module now outputs

schema.org markup. This makes the task much easier for search engines to extract and

index data from your site because the schema.org markup is semantic. That is, it adds

meaning to your content. It shows, for example, that a given set of numbers are your

restaurant’s opening hours and another are your phone number; one set of words is your

menu, and another the owner’s name.

17 Acquia.com | 888.922.7842

https://www.drupal.org/project/elements
https://modernizr.com/
http://underscore.js/
http://backbonejs.org/
http://schema.org/
http://schema.org/

Even More Improved Accessibility

Drupal 8 has expanded on Drupal 7’s existing stellar accessibility record with even

more improvements. Drupal 8 extensively uses WAI-ARIA attributes to provide

semantic meaning to elements in rich, front-end applications, such as the in-place

editor and responsive toolbar. On the back-end, Drupal 8 provides a variety of new

Accessibility tools for JavaScript (JS), which allow module developers to create

accessible applications easily.

The video to the right, extracted from Dries’s DrupalCon Prague Keynote,

demonstrates how these new accessibility features appear to assistive technology

users.

https://www.youtube.com/watch?v=8uhNFoOnz_g

New Theme System: Twig

Drupal 8 introduces Twig, a very widely adopted theme system in the PHP

world, to Drupal. Twig’s syntax is simpler and Twig is more secure than the

the PHPTemplate-based theme system in Drupal 7 and below that it

replaces. It allows designers and themers with HTML/CSS knowledge to

modify markup without needing to be a PHP expert and with almost no risk

of their actions causing security issues on your site.

With Twig, themers no longer need to understand the syntax differences

<?php
 <main role=òmainò>
 {# link is in html.html.twig #}

 <div class=òlayout-contentò>
 {{ page.highlighted }}

 {{ title_prefix }}
 {% if title %}
 <h1>{{ title }}</h1>
 {% endif %}

18 Acquia.com | 888.922.7842

https://drupal.org/about/accessibility
http://www.w3.org/WAI/intro/aria
https://www.drupal.org/node/1973218
https://www.youtube.com/watch?v=ipOc1km2uEc
https://prague2013.drupal.org/keynote/dries-buytaert
https://www.youtube.com/watch?v=8uhNFoOnz_g
http://twig.sensiolabs.org/
http://twig.sensiolabs.org/

between deeply-nested arrays and objects, nor when to use each. In Twig,

a simple {{ foo.bar }} statement does the trick. Simple conditional and

looping logic can be contained in {% ... %} tags.

How do you provide those variables if you can no longer use PHP in

templates directly? With THEME_preprocess_HOOK() functions, you do it

the same way you’ve always done (although they are in a file named

THEME.theme instead of template.php).

Twig effectively forces a separation of presentation and business logic, and

all variables going into template files are automatically escaped, far

reducing the risk of dangers like XSS vulnerabilities and making theming in

Drupal 8 more secure than ever before.

Another nice tidbit from Twig is that if you turn on debug mode using

debug: true; in your site’s services.yml file, helpful code comments will be

displayed throughout Drupal’s generated markup to inform you where to

find the template for the markup you’re trying to change, and which

particular “theme suggestion” is being used to generate the markup.

 {{ title_suffix }}

 {{ tabs }}

 {% if action_links %}
 <nav class=òaction-linksò>{{ action_links }}</nav>
 {% endif %}

 {{ page.content }}

 {{ feed_icons }}
 </div>{# /.layout-content #}

{% if page.sidebar_first %}
 <aside class=òlayout-sidebar-firstò role=òcomplementaryò>
 {{ page.sidebar_first }}
 </aside>
 {% endif %}

 {% if page.sidebar_second %}
 <aside class=òlayout-sidebar-secondò role=òcomplementaryò>
 {{ page.sidebar_second }}
 </aside>
 {% endif %}

 </main>
?>

These also allow you to create alternate templates and have them override

the main one based on the specificity of their name (like CSS selectors) and

use case. It’s a bit like having the fabulous Theme Developer module baked

into core! For example:

Fast by Default
Acquia’s own llama-loving performance guru Wim Leers posited that the

best way to make the Internet as a whole faster is to make the leading

CMSes fast by default. This means that CMS’s need to have their

high-performance settings enabled out-of-the-box rather than require

users to be savvy enough to find them in all their various locations. And

in Drupal 8, that’s exactly what we’ve done. You’ll notice that Drupal 8

ships with features such as CSS and JavaScript aggregation already

19 Acquia.com | 888.922.7842

http://wimleers.com/article/performance-calendar-2013-making-the-entire-web-fast

<div class=òcontentò>
 <!-- THEME DEBUG -->
 <!-- THEME HOOK: ónodeô -->
 <!-- FILE NAME SUGGESTIONS:
 * node--1--full.html.twig
 * node--1.html.twig
 * node--article--full.html.twig
 * node--article.html.twig
 * node--full.html.twig
 x node.html.twig
 -->
<!-- BEGIN OUTPUT from ócore/themes/bartik/templates/
 node.html.twigô -->
<article data-history-node-id=ò1ò data-quickedit-entity-
 id=ònode/1ò role=òarticleò class=òcontextual-region node
 node--type-article node--promoted node--view-mode-full
 clearfixò about=ò/node/1ò typeof=òschema:Articleò>
 ...
 </article>
<!-- END OUTPUT from ócore/themes/bartik/templates/node.
 html.twigô -->
 </div>

turned on for a much faster default installation. Huzzah!

What this means to you as a front-end developer is that by default Drupal is

not immediately in a good place to start theming, unless you manually turn

off those performance settings one by one (even hacking core’s CSS

directly will show absolutely no changes). Fortunately, Drupal 8 ships with a

sites/example. settings.local.php file for exactly this purpose. It hard codes

the performance settings to off, which is extremely useful in a development

environment. Simply copy it, rename it as sites/default/settings.local.php,

and uncomment the following lines in sites/default/settings.php:

<?php
if (file_exists(__DIR__ . ó/settings.local.phpô)) {
include __DIR__ . ó/settings.local.phpô;
}
?>

Your new settings.local.php file points to development.services.yml, which contains some disabled-by-default settings about Twig specifically, for example

ones for turning on debug mode and turning off caching. Changing these settings to true will definitely make your dev site slower but will also make theming

much easier, because you’ll be able to see the results of your changes to Twig templates immediately, without having to clear the cache.

In other front-end performance-related news, while Drupal 8.2 still ships with the latest, updated versions of jQuery and jQuery UI, a lot of movement is going

away from using libraries like this in favor of run-of-the-mill JavaScript to keep front-end performance as quick as possible, which is especially important for

mobile devices. The default install of Drupal 8 actually doesn’t load any JavaScript at all for anonymous users!

New UI Elements

Drupal 8 ships with several new UI elements that you can use in your own admin screens,

including modal dialogs and drop buttons, which were part of the Chaos tool suite (ctools)

20 Acquia.com | 888.922.7842

http://drupal.org/project/ctools

module in Drupal 7 and below. Drupal 8 introduces the concept of “button types,” “primary”

(the default form action; styled blue in the default admin theme), and “danger” (styled as red

links) to help users recognize and make correct choices when confronted with multiple

options on a form.

Theme Responsively
As mentioned in the Mobile Improvements section of this ebook, Drupal 8 ships with numerous new responsive features, including responsive themes, toolbar, images,

and tables.

To support these features, themes can now declare Breakpoints (the height, width, and resolution at which a design changes to meet shifting browsers and

devices) that can be used by responsive features.

Drupal 8 also ships with the new Responsive Image module, which contains support for the HTML5’s <picture> and <source> elements, as well as the sizes,

srcset and type attributes This will make for a significant front-end performance improvement, particularly on mobile devices, because it allows delivering

smaller images (typically the heaviest part of any page load) for smaller screens, saving data.

21 Acquia.com | 888.922.7842

https://www.acquia.com/blog/ultimate-guide-drupal-8-episode-2-mobile-improvements
https://www.drupal.org/node/18139
https://www.drupal.org/node/2260061
https://html.spec.whatwg.org/multipage/embedded-content.html#embedded-content

New Method of Selectively Adding JS/CSS to the

Page
Also helping out on the performance front, Drupal 8 has a new recommended

best-practice for registering JS and CSS assets (along with their dependencies).

Assets are defined in your MODULE/THEME.libraries.yml file as a series of

properties that you then reference in the #attached property of an element or

render array. For example:

Seven.libraries.yml

 maintenance-page:
 version: VERSION
 js:
 js/mobile.install.js: {}
 css:
 theme:
 maintenance-page.css: {}
 dependencies:
 - system/maintenance
 install-page:
 version: VERSION
 js:
 js/mobile.install.js: {}
 css:
 theme:
 install-page.css: {}
 dependencies:
 - system/maintenance
 drupal.nav-tabs:
 version: VERSION
 js:
 js/nav-tabs.js: {}
 dependencies:
 - core/matchmedia
 - core/jquery
 - core/drupal
 - core/jquery.once
 - core/jquery.intrinsic

Seven.theme

<?php
function seven_preprocess_install_page(&$variables) {
 // ...
 $libraries = array(
 ó#attachedô => array(
 ólibraryô => array(
 óseven/maintenance-pageô,
 óseven/install-pageô,
),
),
);
 drupal_render($libraries);
}
?>

Although this isn’t quite as convenient as the Drupal-7-style quick in-line

call to drupal_add_FOO(), it makes these assets cacheable for improved

performance, and easily re-usable among different parts of the code

base.

22 Acquia.com | 888.922.7842

R.I.P. IE 6, 7, and 8
Another big improvement for front-end developers and designers is that Drupal 8 core has officially dropped support for IE 6, 7, and 8, enabling the use

of jQuery 2.0 and other code that assumes modern HTML5/CSS3 browser support.

As a parting gift, html5shiv (an HTML5 polyfill for less capable browsers) is included in D8 core so at least IE 8 and below aren’t completely ignored, and

the IE8 project in contrib is available for those who absolutely must have IE8-compatible versions of core front-end features on Drupal 8 websites. For

the rest of us, we’re looking forward to snappier front-end code that doesn’t have to worry about limitations in 5+ year old browsers.

23 Acquia.com | 888.922.7842

https://github.com/afarkas/html5shiv
https://www.drupal.org/project/ie8

Back-end Developer Improvements
Drupal 8 gives you lots of back-end developer improvements, including an API for configuring your system. All entities are

now classed as objects. You also get improved caching, better integration with third-party services, and lots of built-in web

services features. It just keeps getting better.

New Configuration Management System
Probably the most looked-forward-to change in Drupal 8, for both developers and site builders, is the new configuration management system. In Drupal 7

and below, both content and configuration were saved to the database (sometimes with a mix of both in the same table), making deploying configuration

changes from one environment to another (for example, development to production) very tricky. A variety of workarounds emerged for this, including

hook_update_N(), Features module, and of course the old standby: carefully writing the configuration changes you made in development on a napkin and

then manually repeating them in production. However, all these were attempting to circumvent the fundamental problem that Drupal core didn’t properly

support configuration deployment natively—until Drupal 8, that is.

In Drupal 8, all configuration changes (both standard admin settings forms, such as site name, as well as any ConfigEntity including Views, user roles, and

content types) run through a unified configuration API. Each environment has a “sync” directory to hold configuration changes from other environments

that are about to be imported for review. For performance, active configuration is stored in a config table in the database, though the storage location is

swappable (e.g. to something like Redis or CassanDrupaldra).

Drupal 8 also ships with a basic UI to do both single and full configuration imports and exports, and configuration can also be moved around via the

command line with Drush’s config-* commands, which is handy when using version control systems such as Git.

24 Acquia.com | 888.922.7842

https://api.drupal.org/api/drupal/modules!system!system.api.php/function/hook_update_N/7.x
https://www.drupal.org/project/features
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Config!Entity!ConfigEntityInterface.php/interface/ConfigEntityInterface/8.2.x
https://api.drupal.org/api/drupal/core!modules!system!core.api.php/group/config_api/8.2.x
https://github.com/drush-ops/drush

The basic workflow (after making whatever configuration changes to your Drupal 8 site) is:

1. On the development site, export your site’s configuration. You’ll receive a tarball that

consists of lots of YAML files.

2. On the production site, import the files, which places them into the config “sync” area.

3. In the configuration UI, view the list of what configuration settings have changed and

view a “diff” of changes in advance.

4. If the changes are acceptable, synchronize them. This will replace production’s current

active store with the contents of the sync directory and become the new values that

Drupal will use to build pages.

Of course, there are some settings that are specific to a given environment that you don’t

want to be deployed across environments; for example, the timestamp storing the last time

cron ran. For these more ephemeral settings, there’s a “sister” API to the configuration API

named the State API. There’s also the Configuration Development module, which

automatically exports/imports active configuration in files and is handy during development.

What About Content Deployment?
Drupal 8.2 core ships with improved (over Drupal 8.1) alpha-stability-support for migrating content such as nodes, users, and taxonomy terms between sites

via the Migrate, Migrate Drupal, and the Migrate Drupal UI core experimental modules. Outside of full site migrations, one welcome addition to Drupal 8 that

facilitates content deployment has been the introduction of UUIDs (universally unique identifiers) to every piece of content. These UUIDs can be used to

determine whether a piece of content from a source site exists on a given destination site. This makes content imports/exports infinitely easier because even

if both the source and destination sites have a node/100, for example, each will have a unique (obviously!) UUID. Contributed modules such as Deploy

module can make use of this data for facilitating content transfers. If you’re still on Drupal 7, you can get similar functionality to what Drupal 8 core offers via

the Universally Unique IDentifier module.

25 Acquia.com | 888.922.7842

https://api.drupal.org/api/drupal/core%21modules%21system%21core.api.php/group/state_api/8
https://www.drupal.org/project/deployv
https://www.drupal.org/project/deployv
https://www.drupal.org/project/uuid

Entities, Entities, Everywhere!
Entities were a key new feature and concept in Drupal 7, abstracting the

ability to add fields to other types of content than just nodes, such as users

and taxonomy terms.

In Drupal 8, the Entity API has been completely overhauled to greatly

improve the developer experience and fill in the gaps in functionality

compared to the Drupal 7 core API. All entities are now classed objects that

implement a standard EntityInterface (no more guessing which of the 100

entity hooks you’re required to implement), with baked-in knowledge about

the active language (to aid in translation and localization). Compare and

contrast how this is done in D7 and D8:

Drupal 7

 <?php
Inconsistent Drupal 7 code.
$node->title
$node->body[$langcode][0][óvalueô]
?>

Drupal 8

 <?php
Consistent Drupal 8 code.
$node->get(ótitleô)->value
$node->get(óbodyô)->value
?>

Configuration and Content Entities
Nearly anything you can create more than one of in Drupal 8 has been

converted to an entity, bringing greater consistency to Drupal

development. There are two kinds of these entities: Config entities and

Content entities. What’s the difference?

Content Entities
- Customized fields
- Stored in database tables

(by default)
- Mostly created on front-end

Config Entities
- Deployed to different

environments
- Stored in configuration system
- Mostly created on back-end

Examples
- Nodes
- Custom Blocks
- Users
- Comments
- Taxonomy Terms
- Menu Links
- Aggregator Feeds/Items

Examples
- Content Types
- Custom Block Types
- User Roles
- Views
- Taxonomy Vocabularies
- Menus
- Image Styles

Content entities sport some nifty new features compared to Drupal 7,

like that revisions aren’t just for nodes anymore (!) and the ability to add

comments to any content entity (users, taxonomy terms… you can even

have comments on comments!). The “Site Builder Improvements”
chapter of this ebook has more information about other entity-related

features.

26 Acquia.com | 888.922.7842

https://www.drupal.org/project/entity
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Entity!EntityInterface.php/interface/EntityInterface/8.2.x
https://www.acquia.com/blog/ultimate-guide-drupal-8-episode-3-site-builder-improvements

Wither hook_schema()?

What does this mean for you as a developer? It means that between the Entity API and the Configuration/State API, there is almost never a reason to

create and manage your own database tables by hand in Drupal 8. By using these standard APIs, you’ll benefit from writing less brittle code and benefit

from portability to other databases such as MongoDB.

Web Services
A major focus for Drupal 8 is a native REST API built into Drupal 8 and supported by the RESTful Web Services suite of modules. Drupal 8.2 continues to

expand Drupal's support for web services, enabling Drupal 8 to produce and consume web services for the creation of Drupal-powered decoupled and

mobile applications, facilitate cross-site communication, and allow better integration with third-party resources, for example in micro-services-style

applications.

The Drupal 8 REST API allows for fine-grained configuration of which resources should be available (nodes, taxonomy, users, and so on), what HTTP

methods are allowed against those resources (for example, GET, POST, PATCH, DELETE), and which formats and authentication are used to access those

resources. The contributed REST UI module provides an interface for this configuration. You can define which role(s) on your site may access resources

via each allowed HTTP method. For example, you can allow anonymous users to GET but only administrators to POST.

As of Drupal 8.2, it is possible to read (GET) configuration entities like vocabularies and content types as REST resources (previously not possible) and

there are dedicated resources for user login, logout and registration. The authentication mechanism used by a REST Export Views Display is now

configurable, and support was added for cross-origin resource sharing (CORS) to facilitate REST requests across different domain names. REST resource

configuration is now also significantly simpler, and error messages much clearer.

27 Acquia.com | 888.922.7842

https://www.drupal.org/documentation/modules/rest
https://www.drupal.org/project/restui

https://github.com/webchick/d8ws
http://guzzle.readthedocs.io/en/latest/

