

Ultimate Guide to ​Drupal 8
Revised and updated for Drupal 8.2, as of October, 2016
Angela Byron​, Director, Community Development, Acquia
Jeffrey A. “jam” McGuire​, Evangelist, Developer Relations, Acquia

Table of Contents
Introduction 2

Authoring Experience 4

Mobile Improvements 7

Multilingual++ 9

Front-end Developer Improvements 17

Back-end Developer Improvements 24

Better, Right Down to the Core 30

Your Burning Questions 40

1 Acquia.com​ ​|​ 888.922.7842

Introduction

Drupal 8 has a lot in store for you, whatever you do with Drupal. This ebook will enumerate the major changes, features, and

updates in Drupal 8 – and specifically Drupal 8.2 – for service providers and end users, site builders, designers, theme- and

front-end developers, and for module and back-end developers.

The Drupal community has moved to support innovation within major releases with a new “semantic versioning” release system.

Starting with Drupal 8, a new “minor” version will be released every six months–Drupal 8.0.x, 8.1.x, 8.2.x, and so on, which can

include backwards-compatible new features and functional improvements (which was not possible in Drupal 7 and below). This

is alongside the expected bug fix, “patch” releases between minor versions; for example, Drupal 8.1.1, 8.1.2, and so on.

To further accelerate the pace of innovation, Drupal 8 includes ​“experimental” core modules​ alongside the semantic versioning

concept. While these modules don’t necessarily conform to the rigorous requirements for “full” Drupal core modules, they allow

core contributors to iterate quickly and get real-world feedback on important new functionality that may be fully supported in

future versions of Drupal 8. Experimental core modules must become full modules within a year of their introduction (two minor

releases) or be removed from core again. Drupal 8.2 includes 9 experimental core modules: “beta-stable” BigPipe, and

“alpha-stable” Migrate, Migrate Drupal, Drupal Upgrade UI, Inline Form Errors, Place Block, Content Moderation, Settings Tray,

and DateTime range.

While the focus of this ebook is firmly on Drupal 8 and the improvements in Drupal 8.2, for those familiar with Drupal 7.x, it

includes some comparisons to Drupal 7 functionality and references to Drupal 7 equivalents of Drupal 8 features–for example,

Drupal 7 contributed modules.

2 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/core/experimental

Angela Byron​ is an open source evangelist whose work includes reviewing and committing

Drupal core patches, supporting community contributors, coordinating with the Drupal.org

infrastructure team, and evangelizing Drupal. She is also a Drupal 8 core committer. Angela is

the lead author of O’Reilly’s first Drupal book, entitled Using Drupal. Angie is known as

“​webchick​” on drupal.org.

Jeffrey A. “jam” McGuire​ — Evangelist, Developer Relations at Acquia — is a memorable and

charismatic communicator with a strong following at the intersection of open source software,

business, and culture. He is a frequent keynote speaker at events around the world. He writes

and talks about technology, community, and more on weekly podcasts and as a blogger on

dev.acquia.com​.

3 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/u/webchick
https://dev.acquia.com/

Authoring Experience
A major area of focus in developing Drupal 8 was around the out-of-the-box experience for content authors and editors—the

folks who actually use Drupal websites every day. Here are some of the changes you’ll see.

Spark
Spark is an Acquia initiative created by Dries Buytaert ​to improve Drupal core’s default authoring experience.

The Acquia development team for Drupal core analysed both proprietary and open source competitors to

Drupal and worked hard to make usability enhancements to Drupal core over the course of the release in

collaboration with other Drupal core contributors. They also created​ back ports of key Drupal 8 UX

improvements for Drupal 7​, which allowed them to be tested and improved under everyday, real use even

before the release of Drupal 8.

WYSIWYG Editor
Drupal 8 ships with the ​CKEditor​ WYSIWYG editor in the default installation. In addition to supporting

what you’d expect in a WYSIWYG editor—buttons for bold, italic, images, links, and so on—it supports

extras, such as easily editable image captions, thanks to CKEditor’s new ​Widgets​ feature, developed

specifically for Drupal’s use. It is fully integrated into Drupal 8, from Drupal-styled dialogs, to utilizing

Drupal’s user roles and permissions, to image management, and it ​ensures that we keep the benefits of

Drupal’s structured content concepts in our WYSIWYG implementation.

Drupal 8 also sports a drag-and-drop admin interface for customising the WYSIWYG toolbar; adding

and removing buttons automatically syncs the allowed HTML tags for a given text format. Buttons are

contained in “button groups” with labels that are invisible to the naked eye, but that can be read by

screen readers, providing an accessible editing experience for visually impaired users. Though core will

only support CKEditor, Drupal 8’s Editor module wraps around the WYSIWYG integration, so other text

editors, libraries and contrib modules can be used and tightly integrated as well.

4 Acquia.com​ ​|​ 888.922.7842

http://buytaert.net/announcing-spark-authoring-improvements-for-drupal-7-and-drupal-8
https://www.drupal.org/project/spark
https://www.drupal.org/project/spark
http://ckeditor.com/
http://docs.ckeditor.com/#%21/guide/dev_widgets
http://wimleers.com/article/drupal-8-structured-content-authoring-experience
http://wimleers.com/article/drupal-8-structured-content-authoring-experience

In-place Editing
In Drupal 7, if you need to make a correction on a website—for example, a typo, or a missing

image—you must use a back-end form, which is visually separated from the front-end website

where content will appear. The Preview button doesn’t help, because the results of preview are

shown in the administrative theme (twice, in case you missed it the first time).

Drupal 8’s in-place editing feature allows editors to click into any field within a piece of content,

anywhere it appears on the front-end of the site and edit it right there, without ever visiting the

back-end editing form. Full node content, user profiles, custom blocks, and more are all editable

in-place as well.

To replace Drupal 7’s default editing behavior, which required a more time-consuming visit to the

administrative back-end of the site, this in-place editing feature has been backported to Drupal 7 as

the ​Quick Edit module​.

Outside-in Usability!
Drupal 8.2 introduces a new-to-Drupal usability concept in two experimental core modules: “outside-in”, where configuration changes are made right from the

front-end of the website. ​The new Place Block module allows you to place blocks on any page without having to navigate to the backend administration form.

Block configuration has also become much easier with the experimental Settings Tray module. Selecting a block to edit opens a tray in a sidebar where you

can edit the block’s settings directly. You can configure menus that appear in menu blocks as well as change the site name and site slogan in-place. The

settings tray system is expected to be available for integration with other modules soon.

5 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/project/quickedit
https://www.drupal.org/project/quickedit
https://www.drupal.org/project/quickedit
https://www.drupal.org/project/quickedit
https://www.drupal.org/project/quickedit

Redesigned Content Creation Page
A​ ​community-led effort from Drupal’s Usability team​ resulted in are designed

content creation page in Drupal 8. It contains two columns: one for the main fields

(the actual “content” part of your content) and another for the “extras”—optional

settings that are used less often.

The new design lets content authors focus on the task at hand while having

important publishing options just a click away.

Refreshed Admin Theme
The administrative theme in Drupal 8 is a visually refreshed version of Drupal 7’s,

based on a formal ​style guide ​which can also be used by module developers and

others concerned about backend usability.

Content Moderation
As part of the plan for incremental improvement throughout the Drupal 8 release cycle, Drupal 8.0.0 core included API support under the hood for a draft

revision-state to help integrate publishing-workflow modules, like ​Workbench​.​ ​Drupal has always supported both published and unpublished content, but

more granular workflow support was not available in Drupal core. The new experimental Content Moderation module, based on the contributed Workbench

Moderation project and added to core in 8.2, allows defining content workflow states such as Draft, Archived, and Published, as well as which roles have the

ability to move content between states.

Automatic revision saving
Drupal now enables revisions by default for new content types. This is

important for systems-of-record and compliance, providing better

accountability, creating a "safety net" for recovering from unintended changes,

and for integrating with further future workflow features.

6 Acquia.com​ ​|​ 888.922.7842

https://groups.drupal.org/node/214898
https://groups.drupal.org/node/283223
https://www.drupal.org/project/workbench
https://www.drupal.org/project/workbench

Mobile Improvements

A huge amount of work has gone into making Drupal 8 “mobile friendly.” Drupal 8 is able to support site visitors’ needs as they

surf the web on their tablets and phones, as well as enabling authors and editors to actually work productively on their sites from

mobile devices.

Mobile First
Drupal 8 has been designed with mobile in mind, from the installer to the modules page. Even new features, such

as in-place editing, are designed to work on the smallest of screens. Give Drupal 8 a try on your device of choice,

and ​let us know what you think.

The new search box on the modules page adds to your Drupal-8-on-mobile experience by saving you a lot of scrolling

when you need to get to the settings for a particular module. Check out ​Module Filter​ for a similar experience in Drupal

7.

Responsive-ize ALL Things (Themes, Images, Tables…)
To support the unimaginable array of Internet-enabled devices coming in the next 5+ years, Drupal

8 incorporates responsive design into everything it does.

For starters, all core themes are now responsive and automatically reflow elements, such as menus

and blocks, to fit well on mobile devices (if the viewport is too narrow, horizontal elements will

switch to a vertical orientation instead). Images that show up large on a desktop shrink down to fit

on a tablet or smartphone, thanks to built-in support for responsive images.

Drupal 8 also provides support for responsive tables with table columns that can be declared with

high, medium, or low importance. On wide screens, all the columns show, but as the screen size

narrows, the less important columns start dropping off so everything fits nicely. This API is also

built into the Views module, so you can configure your own responsive admin screens.

7 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/node/2152519
https://www.drupal.org/project/module_filter

The ​Responsive Bartik​ and ​Responsive Tables​ modules can make Drupal 7 behave similarly.

Numerous responsive base themes for Drupal 7, including ​Omega​ and ​Zen​, can help you build a

responsive design for your website.

Mobile-friendly Toolbar
Drupal 8 sports a responsive administrative toolbar that automatically expands and orients itself

horizontally on wide screens and collapses down to icons and orients itself vertically on smaller

screens. Like all new front-end features in Drupal 8, this one was designed with accessibility in

mind. The toolbar allows screen-reader users to easily navigate to various parts of a site.

If you’re interested in this feature for Drupal 7, check out the ​Mobile Friendly Navigation Toolbar

module.

Front-end Performance
One of the biggest factors that can make or break the mobile experience is the raw performance

of a website. As a result, a lot of work went into minimizing Drupal 8’s front-end footprint. Page

loads were sped up by replacing jQuery with efficient, targeted, native JavaScript in many cases

and out-of-the-box Drupal 8 loads no JavaScript files at all for anonymous visitors. Drupal 8’s

caching is a big advance over Drupal 7’s. It includes entity caching and powerful, granular cache

tags which allow for targeted cache clearing so pages stay fast

longer. Drupal 8.1 also introduced BigPipe page delivery as an

“alpha-stability” ​experimental core module​. It has been upgraded

to “beta-stability”in Drupal 8.2, meaning it is ready for use and

testing by early adopters, and the API is stable enough for

developers to begin using and extending it. See the Backend Developer Improvements chapter of this ebook for more on

caching and BigPipe’s effect on user experience thanks to faster perceived loading. Additionally, lighter-weight,

mobile-friendly alternatives replaced JavaScript-intensive features like the Overlay module. Drupal 8 uses a simple “Back to

site” link in the admin toolbar while in an administrative context. ​See Escape Admin​ for a Drupal 7 equivalent.

8 Acquia.com​ ​|​ 888.922.7842

https://drupal.org/project/responsive_bartik
https://drupal.org/project/responsive_tables
http://drupal.org/project/omega
http://drupal.org/project/zen
https://drupal.org/project/navbar
https://drupal.org/project/navbar
https://www.drupal.org/core/experimental
https://drupal.org/project/escape_admin

 Multilingual++
The Multilingual Initiative​ (D8MI), led by Acquia’s own ​Gábor Hojtsy​ with the participation of over ​1,000 contributors​, was a

major development focus for Drupal 8. Check out Gábor’s excellent ​Drupal 8 Multilingual Tidbits ​series if you’re interested in

all the details about D8MI.

Multilingual First
Drupal 8 is a CMS built from the ground up for multilingual use. You can perform your entire

site installation and setup in your language of choice. Right on the installer page, it

auto-detects your browser’s language and auto-selects that language for installation in the

drop-down for your convenience. When you install Drupal in any language other than

English (or later add a new language to your site), Drupal 8 automatically downloads the

latest interface translations from ​localize.drupal.org ​in your language, too. This works for

right-to-left languages, such as Arabic and Hebrew, too. Drupal’s interface translations are

dependent on local communities for accuracy and completeness, so some translations may

be missing some strings.

On​ localize.drupal.org​, you can always contribute those yourself and help your language

community take advantage of Drupal. Drupal 8 does away with the previous Drupal-concept

of English as a “special” language. If you select a language other than English on

installation, the English option will no longer show in your site configuration unless explicitly

turned on. Also, you can make English itself “translatable” so that you can convert strings to

something more tailored to your users. For example, you can change “Log in / Log off” to

“Sign in / Sign off.”

9 Acquia.com​ ​|​ 888.922.7842

http://www.drupal8multilingual.org/
https://www.acquia.com/about-us/team/g-bor-hojtsy
http://www.drupal8multilingual.org/team
http://hojtsy.hu/multilingual-drupal8
https://localize.drupal.org/
https://localize.drupal.org/

Fewer Modules, Packing a Bigger Punch
Making a site multilingual in Drupal 8 requires nothing more than activating one or more of just

four modules, all shipped with Drupal 8 core. These four modules do everything and more than

the roughly 30 contributed modules and lots of tricky configuration needed to make a Drupal 7

site multilingual.

- Language​ provides Drupal 8’s underlying language support. It is the base module and is

required by the other multilingual modules.

- Configuration Translation​ makes things like blocks, menus, views, and so on, translatable.

- Content Translation​ makes things such as nodes, taxonomy terms, and comments

translatable.

- Interface Translation​ makes Drupal’s user interface itself translatable.

Why four modules and not just one, you ask? This granularity allows site builders to choose whatever combination of features meet their site’s specific use

case, without forcing them to deal with the parts they don’t need. For example, single-language, non-English sites are a valid use case, as are multilingual sites

that may or may not need their content translated (e.g. to keep user-generated content in its native language), as are a plethora of combinations of interface

languages and content translations for site admins, content authors, and end users.

Language Selection Everywhere
Everything from system configuration settings to site components, such as blocks,

views, and menus, to individual field values on content are translatable. For content

entities (comments, nodes, users, taxonomy terms, and so on), you have even more

options, like configuring the visibility of the language selector, and whether newly

created content defaults to the site’s default language, the content author’s preferred

language, or some other value.

10 Acquia.com​ ​|​ 888.922.7842

Streamlined Translation UIs
Drupal’s international community put a lot of effort into the user experience

of Drupal 8’s multilingual functionality. You’ll see well-integrated and

streamlined translation interfaces throughout Drupal 8.

Transliteration Support
One really handy addition to Drupal 8 is the inclusion of the Transliteration

module in core. It automatically converts special characters like “ç” and “ü”

to “c” and “u” for friendlier, more human-readable machine names, file

uploads, paths, and search results.

...And More!
Here are some extras for site builders that are worth mentioning:

- Several of the pages in core that are using Views allow for much easier language-based customization, especially the admin views, where adding

language filters, a language column, and so on, are easy to put together.

- The Drupal 8 core Content Translation module is well-integrated with Drupal 8‘s core search and the Search API can also access language information for

integration with search technologies like Apache Solr and Elasticsearch.

- The language selection system now supports one or more separate admin languages, for easier management of multilingual sites by site admins who

might speak different languages.

11 Acquia.com​ ​|​ 888.922.7842

 Site Builders FTW
Although the ​authoring experience​ improvements and ​mobile improvements​ in Drupal 8 tend to focus on end users and content

authors of Drupal websites, Drupal 8 also includes a huge push to improve the site building tools.

Views in Core!
The Views module, the ​most frequently used contributed module in Drupal​,
is now part of Drupal 8 core and is more tightly integrated into Drupal then

ever before. Beyond providing a query-builder UI and serving up the

results in a variety of formats for site visitors, baking Views into Drupal core

allowed core developers to replace numerous previously hardcoded admin

pages with Views listings. This removed thousands of lines of boilerplate

code from Drupal core and more importantly, gives site builders the power

to customise most of the main administrative listings (or even build brand

new ones!). The Content, People, and Files admin pages, as well as

various sidebar blocks, several RSS feeds, and the default front page have

been converted to Views. Almost everyone who has built a site of any

complexity in Drupal knows how to use Views. This makes customizations

of these pages—for example to add a “Full name” search to the People

listing, or thumbnails next to items in the Content listing—just a few clicks

away. Everything you know and love from Views is included in Drupal 8

core—and even a few extras such as mobile-friendly administration, some

user experience and accessibility improvements, the ability to create

responsive table listings, and the ability to turn any listing into a REST

export that can be consumed by a mobile application or other external

service.

12 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/project/usage

More and Better Blocks
In Drupal 8, you’ll notice a few new features as they relate to blocks. First, just like with Views replacing admin pages, several previously hard-coded site

components have been converted to blocks, including breadcrumbs, site name, and slogan. This makes it easier to adjust page organization in the user

interface, and enables in-place editing, and makes for easier theming.

Reusable Blocks and Custom Block Types
A nice addition to Drupal 8 is the ability to re-use blocks. You can place a block in multiple places, for example, a “Navigation” block in both the header and

footer.

And finally, you can now create custom block types, just as you can create

custom content types, to allow for granular control over different styling, different

fields, and more. This allows you to create, for example, an “Ad” block type with

an “Ad code” field that can contain JavaScript snippets from a remote ad service

and then add and place as many different blocks of that type on your site as you

need.

Improved and Expanded Entity and Field Features
Two of Drupal 7’s most powerful site builder features—Entities and Fields—have

been expanded in Drupal 8. Everything from content, to users,

comments, and much more are all entities. You can add fields to all entities,

including references to other entities. This makes it easier than ever to build data

models for the structured content you want to manage using Drupal.

More Field Types
To build those data models, Drupal 8.2 includes a plethora of fundamental,

semantic field types like Taxonomy, Image, Phone, Email, Link, and File, as

13 Acquia.com​ ​|​ 888.922.7842

well as some more powerful fields such as Entity Reference and Date Range. Even the setting for whether comments are open or closed has been moved

to a field, making any entity type commentable.

Form Modes
In addition to Drupal 7’s “view modes” feature, which allows creating multiple display options for content in different contexts (for example, showing a

thumbnail image on your content’s teaser view and a full-size image on the default view), Drupal 8 adds the notion of “form modes” to do the same for

data-entry forms. Here’s an example of configuring the user registration form differently from the user edit form, so you can hide the more esoteric fields

and provide a simpler user experience.

Take a Tour
Drupal 8’s new Tour module lets site builders create contextual,

step-by-step tooltip-style walkthroughs of your site. It can help with

overviews of administrative interfaces, introduce new terminology, and walk

through the steps involved in configuring components of your site.

Both Less and More, Module-wise
You’ll find Drupal 8 missing some modules that shipped with Drupal 7,

14 Acquia.com​ ​|​ 888.922.7842

namely Blog, Dashboard, Open ID, Overlay, PHP filter, Poll, Profile, and

Trigger (as well as the Garland theme). You’ll find several new modules in

which functionality has been split out into more granular chunks, such as

Menu Links/Menu UI, Block/Custom Block, Ban/History/Actions (formally

baked into User/Node/System module), and so on.

Heather James’s “​Drupal 8 Site Building Preview—Less Is More​” has a great

rundown of the state of modules, including contrib modules that are now

rendered obsolete due to the functionality that ships with Drupal 8 core.

The bottom line: Drupal 8 core ships with enough functionality

out-of-the-box that site builders can create fairly sophisticated sites without

having to install a plethora of contributed modules.

Migration Path
Drupal’s major version upgrade path has been replaced with a migration

path, courtesy of a D8 port of the ​Migrate​ and ​Migrate Drupal-to-Drupal

modules. Since Drupal 8.1, there is also a Migration UI in core, which

allows major Drupal version migrations without resorting to command-line

tools. Both a migration path from Drupal 6 (already in Drupal 8.x) and

Drupal 7 (partially in 8.x and under development) are supported. The

migration path allows you to keep your Drupal 6/7 site running while you

build your new Drupal 8 site, greatly minimizing downtime over the old

15 Acquia.com​ ​|​ 888.922.7842

https://www.acquia.com/blog/tutorial-drupal-8-site-building-preview-less-more
https://www.drupal.org/project/migrate
https://www.drupal.org/project/migrate_d2d

update.php method.

For more on Drupal 8’s improved major version upgrade process, check out

Moshe Weitzman’s “​Drupal 8—Improved Upgrade Process​” blog from

December 2013.

Front-end Developer Improvements
Drupal 8 contains a lot of improvements for front-end developers, including HTML5, additional helper libraries, accessibility

enhancements, new themes and UI elements, and faster performance, to name a few.

HTML5
All of Drupal’s output has been converted to use semantic HTML5 markup by default, as part of an overarching effort to clean up Drupal’s default markup.

This means you’ll find tags such as <nav>, <header>,<main>, and <section> in Drupal’s default templates and you’ll find HTML5/CSS3 replacements for

several things that previously needed custom workarounds: resizing on text areas and first/last/odd/ even classes is now covered by CSS3

16 Acquia.com​ ​|​ 888.922.7842

https://dev.acquia.com/blog/drupal-8-improved-upgrade-process

pseudo-selectors; and collapsible fieldsets largely replaced by the by the <details> element.

HTML5 also brings new form input types, such as date, tel, and email, that can provide targeted user interfaces on mobile devices (for example, only showing

the number pad when entering phone numbers) to help streamline data entry. Drupal’s Form API provides these additional types so you can easily create

these new types of fields. The Drupal 7 equivalent can be found in the ​Elements module.

New Front-end Libraries and Helpers
Drupal has shipped with jQuery since Drupal 5 and jQuery UI since Drupal 7. Drupal

8 brings with it an update to the latest version of jQuery and an expanded array of

front-end libraries. Together, these additional libraries allow for creating

mobile-friendly, rich front-end applications in Drupal, and they’re used by several of

the Authoring Experience and Mobile feature improvements to Drupal 8. These

include:

- Modernizr​ (detects if a browser supports touch or HTML5/

CSS3 features)

- Underscore.js​ ​(a lightweight JS-helper library)

- Backbone.js​ (a model-view-controller JavaScript framework).

Native ​Schema.Org​ Output

In a great boon for search-engine optimization, Drupal 8’s RDFa module now outputs

schema.org markup. This makes the task much easier for search engines to extract and

index data from your site because the ​schema.org​ markup is semantic. That is, it adds

meaning to your content. It shows, for example, that a given set of numbers are your

restaurant’s opening hours and another are your phone number; one set of words is your

menu, and another the owner’s name.

17 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/project/elements
https://modernizr.com/
http://underscore.js/
http://backbonejs.org/
http://schema.org/
http://schema.org/

Even More Improved Accessibility

Drupal 8 has expanded on ​Drupal 7’s existing stellar accessibility record​ with even

more improvements. Drupal 8 extensively uses ​WAI-ARIA​ attributes to provide

semantic meaning to elements in rich, front-end applications, such as the in-place

editor and responsive toolbar. On the back-end, Drupal 8 provides a variety of new

Accessibility tools ​for JavaScript (JS), which allow module developers to create

accessible applications easily.

The ​video​ to the right, extracted from ​Dries’s DrupalCon Prague Keynote​,

demonstrates how these new accessibility features appear to assistive technology

users.

https://www.youtube.com/watch?v=8uhNFoOnz_g

New Theme System: ​Twig

Drupal 8 introduces ​Twig​, a very widely adopted theme system in the PHP

world, to Drupal. Twig’s syntax is simpler and Twig is more secure than the

the PHPTemplate-based theme system in Drupal 7 and below that it

replaces. It allows designers and themers with HTML/CSS knowledge to

modify markup without needing to be a PHP expert and with almost no risk

of their actions causing security issues on your site.

With Twig, themers no longer need to understand the syntax differences

<?php
 <main role=”main”>
 {# link is in html.html.twig #}

 <div class=”layout-content”>
 {{ page.highlighted }}

 {{ title_prefix }}
 {% if title %}
 <h1>{{ title }}</h1>
 {% endif %}

18 Acquia.com​ ​|​ 888.922.7842

https://drupal.org/about/accessibility
http://www.w3.org/WAI/intro/aria
https://www.drupal.org/node/1973218
https://www.youtube.com/watch?v=ipOc1km2uEc
https://prague2013.drupal.org/keynote/dries-buytaert
https://www.youtube.com/watch?v=8uhNFoOnz_g
http://twig.sensiolabs.org/
http://twig.sensiolabs.org/

between deeply-nested arrays and objects, nor when to use each. In Twig,

a simple {{ foo.bar }} statement does the trick. Simple conditional and

looping logic can be contained in {% ... %} tags.

How do you provide those variables if you can no longer use PHP in

templates directly? With THEME_preprocess_HOOK() functions, you do it

the same way you’ve always done (although they are in a file named

THEME.theme instead of template.php).

Twig effectively forces a separation of presentation and business logic, and

all variables going into template files are automatically escaped, far

reducing the risk of dangers like XSS vulnerabilities and making theming in

Drupal 8 more secure than ever before.

Another nice tidbit from Twig is that if you turn on debug mode using

debug: true; in your site’s services.yml file, helpful code comments will be

displayed throughout Drupal’s generated markup to inform you where to

find the template for the markup you’re trying to change, and which

particular “theme suggestion” is being used to generate the markup.

 {{ title_suffix }}

 {{ tabs }}

 {% if action_links %}
 <nav class=”action-links”>{{ action_links }}</nav>
 {% endif %}

 {{ page.content }}

 {{ feed_icons }}
 </div>{# /.layout-content #}

{% if page.sidebar_first %}
 <aside class=”layout-sidebar-first” role=”complementary”>
 {{ page.sidebar_first }}
 </aside>
 {% endif %}

 {% if page.sidebar_second %}
 <aside class=”layout-sidebar-second” role=”complementary”>
 {{ page.sidebar_second }}
 </aside>
 {% endif %}

 </main>
?>

These also allow you to create alternate templates and have them override

the main one based on the specificity of their name (like CSS selectors) and

use case. It’s a bit like having the fabulous Theme Developer module baked

into core! For example:

Fast by Default
Acquia’s own llama-loving performance guru Wim Leers posited that the

best way to make the Internet as a whole faster is to make the leading

CMSes fast by default​. This means that CMS’s need to have their

high-performance settings enabled out-of-the-box rather than require

users to be savvy enough to find them in all their various locations. And

in Drupal 8, that’s exactly what we’ve done. You’ll notice that Drupal 8

ships with features such as CSS and JavaScript aggregation already

19 Acquia.com​ ​|​ 888.922.7842

http://wimleers.com/article/performance-calendar-2013-making-the-entire-web-fast

<div class=”content”>
 <!-- THEME DEBUG -->
 <!-- THEME HOOK: ‘node’ -->
 <!-- FILE NAME SUGGESTIONS:
 * node--1--full.html.twig
 * node--1.html.twig
 * node--article--full.html.twig
 * node--article.html.twig
 * node--full.html.twig
 x node.html.twig
 -->
<!-- BEGIN OUTPUT from ‘core/themes/bartik/templates/
 node.html.twig’ -->
<article data-history-node-id=”1” data-quickedit-entity-
 id=”node/1” role=”article” class=”contextual-region node
 node--type-article node--promoted node--view-mode-full
 clearfix” about=”/node/1” typeof=”schema:Article”>
 ...
 </article>
<!-- END OUTPUT from ‘core/themes/bartik/templates/node.
 html.twig’ -->
 </div>

turned on for a much faster default installation. Huzzah!

What this means to you as a front-end developer is that by default Drupal is

not immediately in a good place to start theming, unless you manually turn

off those performance settings one by one (even hacking core’s CSS

directly will show absolutely no changes). Fortunately, Drupal 8 ships with a

sites/example. settings.local.php file for exactly this purpose. It hard codes

the performance settings to off, which is extremely useful in a development

environment. Simply copy it, rename it as sites/default/settings.local.php,

and uncomment the following lines in sites/default/settings.php:

<?php
if (file_exists(__DIR__ . ‘/settings.local.php’)) {
include __DIR__ . ‘/settings.local.php’;
}
?>

Your new settings.local.php file points to development.services.yml, which contains some disabled-by-default settings about Twig specifically, for example

ones for turning on debug mode and turning off caching. Changing these settings to true will definitely make your dev site slower but will also make theming

much easier, because you’ll be able to see the results of your changes to Twig templates immediately, without having to clear the cache.

In other front-end performance-related news, while Drupal 8.2 still ships with the latest, updated versions of jQuery and jQuery UI, a lot of movement is going

away from using libraries like this in favor of run-of-the-mill JavaScript to keep front-end performance as quick as possible, which is especially important for

mobile devices. The default install of Drupal 8 actually doesn’t load any JavaScript at all for anonymous users!

New UI Elements

Drupal 8 ships with several new UI elements that you can use in your own admin screens,

including modal dialogs and drop buttons, which were part of the ​Chaos tool suite (ctools)

20 Acquia.com​ ​|​ 888.922.7842

http://drupal.org/project/ctools

module in Drupal 7 and below. Drupal 8 introduces the concept of “button types,” “primary”

(the default form action; styled blue in the default admin theme), and “danger” (styled as red

links) to help users recognize and make correct choices when confronted with multiple

options on a form.

Theme Responsively
As mentioned in the ​Mobile Improvements​ section of this ebook, Drupal 8 ships with numerous new responsive features, including responsive themes, toolbar, images,

and tables.

To support these features, themes can now declare ​Breakpoints​ (the height, width, and resolution at which a design changes to meet shifting browsers and

devices) that can be used by responsive features.

Drupal 8 also ships with the new ​Responsive Image module​, which contains support for the HTML5’s ​<picture> and <source>​ elements, as well as the sizes,

srcset and type attributes This will make for a significant front-end performance improvement, particularly on mobile devices, because it allows delivering

smaller images (typically the heaviest part of any page load) for smaller screens, saving data.

21 Acquia.com​ ​|​ 888.922.7842

https://www.acquia.com/blog/ultimate-guide-drupal-8-episode-2-mobile-improvements
https://www.drupal.org/node/18139
https://www.drupal.org/node/2260061
https://html.spec.whatwg.org/multipage/embedded-content.html#embedded-content

New Method of Selectively Adding JS/CSS to the

Page
Also helping out on the performance front, Drupal 8 has a new recommended

best-practice for registering JS and CSS assets (along with their dependencies).

Assets are defined in your MODULE/THEME.libraries.yml file as a series of

properties that you then reference in the #attached property of an element or

render array. For example:

Seven.libraries.yml

 ​maintenance-page:
 version: VERSION
 js:
 js/mobile.install.js: {}
 css:
 theme:
 maintenance-page.css: {}
 dependencies:
 - system/maintenance
 install-page:
 version: VERSION
 js:
 js/mobile.install.js: {}
 css:
 theme:
 install-page.css: {}
 dependencies:
 - system/maintenance
 drupal.nav-tabs:
 version: VERSION
 js:
 js/nav-tabs.js: {}
 dependencies:
 - core/matchmedia
 - core/jquery
 - core/drupal
 - core/jquery.once
 - core/jquery.intrinsic

Seven.theme

<?php
function seven_preprocess_install_page(&$variables) {
 // ...
 $libraries = array(
 ‘#attached’ => array(
 ‘library’ => array(
 ‘seven/maintenance-page’,
 ‘seven/install-page’,
),
),
);
 drupal_render($libraries);
}
?>

Although this isn’t quite as convenient as the Drupal-7-style quick in-line

call to drupal_add_FOO(), it makes these assets cacheable for improved

performance, and easily re-usable among different parts of the code

base.

22 Acquia.com​ ​|​ 888.922.7842

R.I.P. IE 6, 7, and 8
Another big improvement for front-end developers and designers is that Drupal 8 core has officially dropped support for IE 6, 7, and 8, enabling the use

of jQuery 2.0 and other code that assumes modern HTML5/CSS3 browser support.

As a parting gift, ​html5shiv​ (an HTML5 polyfill for less capable browsers) is included in D8 core so at least IE 8 and below aren’t completely ignored, and

the ​IE8 project​ in contrib is available for those who absolutely must have IE8-compatible versions of core front-end features on Drupal 8 websites. For

the rest of us, we’re looking forward to snappier front-end code that doesn’t have to worry about limitations in 5+ year old browsers.

23 Acquia.com​ ​|​ 888.922.7842

https://github.com/afarkas/html5shiv
https://www.drupal.org/project/ie8

Back-end Developer Improvements
Drupal 8 gives you lots of back-end developer improvements, including an API for configuring your system. All entities are

now classed as objects. You also get improved caching, better integration with third-party services, and lots of built-in web

services features. It just keeps getting better.

New Configuration Management System
Probably the most looked-forward-to change in Drupal 8, for both developers and site builders, is the new configuration management system. In Drupal 7

and below, both content and configuration were saved to the database (sometimes with a mix of both in the same table), making deploying configuration

changes from one environment to another (for example, development to production) very tricky. A variety of workarounds emerged for this, including

hook_update_N()​, ​Features module​, and of course the old standby: carefully writing the configuration changes you made in development on a napkin and

then manually repeating them in production. However, all these were attempting to circumvent the fundamental problem that Drupal core didn’t properly

support configuration deployment natively—until Drupal 8, that is.

In Drupal 8, all configuration changes (both standard admin settings forms, such as site name, as well as any ​ConfigEntity​ including Views, user roles, and

content types) run through a unified ​configuration API​. Each environment has a “sync” directory to hold configuration changes from other environments

that are about to be imported for review. For performance, active configuration is stored in a config table in the database, though the storage location is

swappable (e.g. to something like Redis or CassanDrupaldra).

Drupal 8 also ships with a basic UI to do both single and full configuration imports and exports, and configuration can also be moved around via the

command line with ​Drush’s config​-* commands, which is handy when using version control systems such as Git.

24 Acquia.com​ ​|​ 888.922.7842

https://api.drupal.org/api/drupal/modules!system!system.api.php/function/hook_update_N/7.x
https://www.drupal.org/project/features
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Config!Entity!ConfigEntityInterface.php/interface/ConfigEntityInterface/8.2.x
https://api.drupal.org/api/drupal/core!modules!system!core.api.php/group/config_api/8.2.x
https://github.com/drush-ops/drush

The basic workflow (after making whatever configuration changes to your Drupal 8 site) is:

1. On the development site, export your site’s configuration. You’ll receive a tarball that

consists of lots of YAML files.

2. On the production site, import the files, which places them into the config “sync” area.

3. In the configuration UI, view the list of what configuration settings have changed and

view a “diff” of changes in advance.

4. If the changes are acceptable, synchronize them. This will replace production’s current

active store with the contents of the sync directory and become the new values that

Drupal will use to build pages.

Of course, there are some settings that are specific to a given environment that you don’t

want to be deployed across environments; for example, the timestamp storing the last time

cron ran. For these more ephemeral settings, there’s a “sister” API to the configuration API

named the ​State API​. There’s also the Configuration Development module, which

automatically exports/imports active configuration in files and is handy during development.

What About Content Deployment?
Drupal 8.2 core ships with improved (over Drupal 8.1) alpha-stability-support for migrating content such as nodes, users, and taxonomy terms between sites

via the Migrate, Migrate Drupal, and the Migrate Drupal UI core experimental modules. Outside of full site migrations, one welcome addition to Drupal 8 that

facilitates content deployment has been the introduction of UUIDs (universally unique identifiers) to every piece of content. These UUIDs can be used to

determine whether a piece of content from a source site exists on a given destination site. This makes content imports/exports infinitely easier because even

if both the source and destination sites have a node/100, for example, each will have a unique (obviously!) UUID. Contributed modules such as ​Deploy

module​ can make use of this data for facilitating content transfers. If you’re still on Drupal 7, you can get similar functionality to what Drupal 8 core offers via

the ​Universally Unique IDentifier module​.

25 Acquia.com​ ​|​ 888.922.7842

https://api.drupal.org/api/drupal/core%21modules%21system%21core.api.php/group/state_api/8
https://www.drupal.org/project/deployv
https://www.drupal.org/project/deployv
https://www.drupal.org/project/uuid

Entities, Entities, Everywhere!
Entities were a key new feature and concept in Drupal 7, abstracting the

ability to add fields to other types of content than just nodes, such as users

and taxonomy terms.

In Drupal 8, the ​Entity API​ has been completely overhauled to greatly

improve the developer experience and fill in the gaps in functionality

compared to the Drupal 7 core API. All entities are now classed objects that

implement a standard ​EntityInterface​ (no more guessing which of the 100

entity hooks you’re required to implement), with baked-in knowledge about

the active language (to aid in translation and localization). Compare and

contrast how this is done in D7 and D8:

Drupal 7

 <?php
Inconsistent Drupal 7 code.
$node->title
$node->body[$langcode][0][‘value’]
?>

Drupal 8

 <?php
Consistent Drupal 8 code.
$node->get(‘title’)->value
$node->get(‘body’)->value
?>

Configuration and Content Entities
Nearly anything you can create more than one of in Drupal 8 has been

converted to an entity, bringing greater consistency to Drupal

development. There are two kinds of these entities: Config entities and

Content entities. What’s the difference?

Content Entities
- Customized fields
- Stored in database tables

(by default)
- Mostly created on front-end

Config Entities
- Deployed to different

environments
- Stored in configuration system
- Mostly created on back-end

Examples
- Nodes
- Custom Blocks
- Users
- Comments
- Taxonomy Terms
- Menu Links
- Aggregator Feeds/Items

Examples
- Content Types
- Custom Block Types
- User Roles
- Views
- Taxonomy Vocabularies
- Menus
- Image Styles

Content entities sport some nifty new features compared to Drupal 7,

like that revisions aren’t just for nodes anymore (!) and the ability to add

comments to any content entity (users, taxonomy terms… you can even

have comments on comments!). The “​Site Builder Improvements​”
chapter of this ebook has more information about other entity-related

features.

26 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/project/entity
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Entity!EntityInterface.php/interface/EntityInterface/8.2.x
https://www.acquia.com/blog/ultimate-guide-drupal-8-episode-3-site-builder-improvements

Wither hook_schema()?

What does this mean for you as a developer? It means that between the Entity API and the Configuration/State API, there is almost never a reason to

create and manage your own database tables by hand in Drupal 8. By using these standard APIs, you’ll benefit from writing less brittle code and benefit

from portability to other databases such as MongoDB.

Web Services
A major focus for Drupal 8 is a native REST API built into Drupal 8 and supported by the ​RESTful Web Services​ suite of modules. Drupal 8.2 continues to

expand Drupal's support for web services, enabling Drupal 8 to produce and consume web services for the creation of Drupal-powered decoupled and

mobile applications, facilitate cross-site communication, and allow better integration with third-party resources, for example in micro-services-style

applications.

The Drupal 8 REST API allows for fine-grained configuration of which resources should be available (nodes, taxonomy, users, and so on), what HTTP

methods are allowed against those resources (for example, GET, POST, PATCH, DELETE), and which formats and authentication are used to access those

resources. The contributed ​REST UI module​ provides an interface for this configuration. You can define which role(s) on your site may access resources

via each allowed HTTP method. For example, you can allow anonymous users to GET but only administrators to POST.

As of Drupal 8.2, it is possible to read (GET) configuration entities like vocabularies and content types as REST resources (previously not possible) and

there are dedicated resources for user login, logout and registration. The authentication mechanism used by a REST Export Views Display is now

configurable, and support was added for cross-origin resource sharing (CORS) to facilitate REST requests across different domain names. REST resource

configuration is now also significantly simpler, and error messages much clearer.

27 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/documentation/modules/rest
https://www.drupal.org/project/restui

Once the various RESTful Web Services modules are configured properly,

you can expose machine-readable data representing your site content, like

this:

 ​..
 [title] => Array
 (
 [0] => Array
 (
 [value] => Hello, world!
 [lang] => en
)
)
...
[body] => Array
 (
 [0] => Array
 (
[value] => <p>This is my awesome
 article.</p>
 [format] => basic_html
 [summary] =>
)
)
…

What good is that? Plenty! Here’s one example of retrieving information

from Drupal 8 in JSON and displaying it in a standalone​ jQuery Mobile app​.

Drupal 8.2 ships with an updated version of the ​Guzzle PHP HTTP library​,
which gives us easy syntax to retrieve and post data to Drupal or to talk to

third-party Web Services, such as Twitter or Github.

Another Web Services feature in Drupal 8 offered by the RESTful Web

Services module is the ability to add a “REST export” display to any view.

This means you can easily create JSON or XML feeds of custom dynamic

content from your Drupal site, just by clicking them together!

28 Acquia.com​ ​|​ 888.922.7842

https://github.com/webchick/d8ws
http://guzzle.readthedocs.io/en/latest/

Improved Caching
And on a final happy note, caching in Drupal 8 has been improved across the board.

- Fast by default: ​All caching features such as CSS/JS aggregation are turned on out of the box.

- Entity cache ​module is now in core.

- Cache tags​ allow for much more granular cache clearing when content or settings are updated on the site and pave the way for further improvements in

performance and user experience like BigPipe, ​RefreshLess​ and more.

- As of Drupal 8.2, caching of 404 responses and breadcrumbs have both been optimised to improve performance.

BigPipe
Activating the experimental “beta-stability” BigPipe Module in Drupal 8.2 core improves the user experience for your site visitors by reducing the perceived

page loading time. Drupal 7 can’t really cache its output because it lacks metadata for caching. In Drupal 7 (and just about every other CMS or framework),

personalization has always made things run slower. Using BigPipe in Drupal 8, it is no longer so. Drupal 8 includes cacheability metadata and knows which

parts of every page are static and which dynamic. BigPipe then sends the unchanging parts of a page to the browser immediately while rendering and

delivering the dynamic parts later, as soon as they are ready. Essentially, your site visitors see what they came to see almost immediately—the main content

and images, for example—while the uncacheable, personalized page elements (such as a shopping cart block) are delivered once rendered.

The changes to Drupal 8’s rendering pipeline that make BigPipe possible are also what made ESI and Drupal 8’s Dynamic Page Cache possible.

Learn more about BigPipe in Drupal 8​ ​in this blog post and in this webinar – BigPipe: The Architecture Behind the Fastest Version of Drupal Yet
– with Wim Leers.

29 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/project/refreshless
https://dev.acquia.com/blog/drupal-8-module-of-the-week/drupal-8-module-of-the-week-bigpipe/22/01/2016/9566
https://dev.acquia.com/blog/drupal-8-module-of-the-week/drupal-8-module-of-the-week-bigpipe/22/01/2016/9566

 Better, Right Down to the Core
Drupal 8 made some major API changes that embrace the way the rest of the world works.

“Proudly Found Elsewhere”
As a counterpoint to our earlier sense of self-sufficiency and rejection of third-party code, expressed as “​Not Invented Here​”, “Proudly Invented Elsewhere”

represents a mind-shift among Drupal core developers. One of the great strengths of open source software is in not having to reinvent the wheel and being

able to build better solutions “on the shoulders of giants.” It means opening our open source project and finding the best tool for the job, versus creating

something custom and specific to Drupal. So we benefit from having a broader community of contributors and users, and when we make improvements to

these open source tools, everyone who uses them benefits, too.

You’ll see this philosophy change many aspects of Drupal 8. Among the external libraries we’ve pulled in are​ PHPUnit​ for unit testing, ​Guzzle​ for performing

HTTP (web service) requests, a variety of Symfony components (​Create your own framework ​on top of the Symfony2 Components is an excellent tutorial for

learning more about those), and ​Composer​ for pulling in external dependencies and class autoloading, and more.

But this philosophy change also extends to the code base itself. We made ​big architecture changes​ in Drupal 8 to embrace the way the rest of the world is

writing code: decoupled, object-oriented (OO), and embracing modern language features of PHP, such as namespaces and traits.

Getting OOP-y with It
Let’s look at a few code samples to illustrate Drupal 8’s “Proudly Found Elsewhere” architecture in action.

In Drupal 8, the Entity API has been completely overhauled to greatly improve the developer experience and fill in the gaps in functionality compared to the

Drupal 7 core API. All entities are now classed objects that implement a standard Entity Interface (no more guessing which of the 100 entity hooks you’re

required to implement), with baked-in knowledge about the active language (to aid in translation and localization). Compare and contrast how this is done in

D7 and D8:

30 Acquia.com​ ​|​ 888.922.7842

https://en.wikipedia.org/wiki/Not_invented_here
https://phpunit.de/
http://guzzle.readthedocs.io/en/latest/
https://github.com/fabpot-graveyard/Create-Your-Framework/tree/master/book
https://getcomposer.org/
http://buytaert.net/why-the-big-architectural-changes-in-drupal-8

Drupal 7: ​example.info

name = Example
description = An example module.
core = 7.x
files[] = example.test
dependencies[] = user

All modules in Drupal need a .info file to register themselves with the system. The example above is typical of a Drupal 7 module. The file format is “INI-like”

for ease of authoring, but also includes some “Drupalisms” such as the array syntax so standard PHP functions for reading/writing INI files can’t be used.

The files key, which triggers Drupal 7’s custom class autoloader to add code to the registry table, is particularly Drupalish, and module developers writing

OO code must add a files line for each file that defines a class, which ​can get a little bit silly.

In embracing “Proudly Found Elsewhere,” info files in Drupal 8 are now simple ​YAML​ files—the same as those used by other languages and frameworks.

The syntax is very similar (mostly : instead of = everywhere, and arrays are formatted slightly differently), and it remains very easy to read and write these

files. The awkward files[] key is gone, in favor of the​ PSR-4​ standard for automatic class autoloading via ​Composer​. The English version of that sentence is

that by following a specific class naming/folder convention (modules/example/src/ExampleClass.php), Drupal can pick up OO code automatically without

requiring manual registration

31 Acquia.com​ ​|​ 888.922.7842

http://drupalcode.org/project/views.git/blob/refs/heads/7.x-3.x:/views.inf
http://www.yaml.org/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://getcomposer.org/

Drupal 7: ​hook_menu()

**
 * Implements hook_menu().
 */
function example_menu() {
 $items[‘hello’] = array(
 ‘title’ => ‘Hello world’,
 ‘page callback’ => ‘_example_page’,
 ‘access callback’ => ‘user_access’,
 ‘access arguments’ => ‘access content’,
 ‘type’ => MENU_CALLBACK,
);
 return $items;
}
/**
 * Page callback: greets the user.
 */
function _example_page() {
 return array(‘#markup’ => t(‘Hello world.’));
}
?>

This is a pretty basic “hello world” module in Drupal 7, which defines a URL

at /hello that when accessed checks to make sure the user has “access

content” permissions before firing the code inside _example_page() which

prints “Hello world.”

The hook_menu() is an example of what is pejoratively known as an

“ArrayPI,” a common pattern in Drupal 7 and earlier. The problem with

ArrayPIs is that they are difficult to type (for example, have you ever

forgotten the return $items and then spent the next 30 minutes

troubleshooting a problem?), have no IDE autocompletion for what

properties are available, and the ​documentation​ must be manually updated

as keys are changed and added. The documentation for hook_menu()

shows that it also suffers from trying to do too many things. It’s used for

registering path-to-page/access callback mappings, but it’s also used to

expose links in the UI in a variety of ways: swapping out the active theme,

and much more.

32 Acquia.com​ ​|​ 888.922.7842

https://api.drupal.org/api/drupal/modules%21system%21system.api.php/function/hook_menu/7.x

Drupal 8: ​Routes + Controllers

Example.routing.yml

path: ‘/hello’
 defaults:
 _content: ‘\Drupal\example\Controller\Hello::content’
 requirements:
 _permission: ‘access content’

src/Controller/Hello.php

namespace Drupal\example\Controller;
use Drupal\Core\Controller\ControllerBase;
/**
 * Greets the user.
 */
class Hello extends ControllerBase {
 public function content() {
 return array(‘#markup’ => $this->t(‘Hello world.’));
 }
}
?>

In Drupal 8’s new ​routing system​, the path-to-page/access-check logic now

lives in a YAML file using the same syntax as the ​Symfony routing system​.
The page callback logic now lives in a “Controller” class (as in the standard

model-view-controller ​pattern) in a specially named folder, per the PSR-4

standard. It’s declared in the example module’s namespace to allow the

example module to name its classes whatever it wants without worry of

conflicting with other modules that might also want to say Hello (Drupal is

very friendly, so it’s possible!). And finally, the class pulls in the logic from

the ControllerBase class in via the use statement and extends it, which

gives the Hello controller access to all ControllerBase’s convenient methods

and capabilities, such as $this->t() (the OO way of calling the t() function).

And, because ControllerBase is a standard PHP class, all its methods and

properties will autocomplete in IDEs, so you aren’t guessing at what it can

and can’t do for you.

33 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/developing/api/8/routing
http://symfony.com/doc/current/book/routing.html
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Drupal 7: ​hook_block_X()

block.module

<?php
/**
 * Implements hook_block_info().
 */
function example_block_info() {
 $blocks[‘example’] = array(
 ‘info’ => t(‘Example block’),
);
 return $blocks;
}
/**
 * Implements hook_block_view().
 */
function example_block_view($delta = ‘’) {
 $block = array();
 switch ($delta) {
 case ‘example’:
 $block[‘subject’] = t(‘Example block’);
 $block[‘content’] = array(
 ‘hello’ => array(
 ‘#markup’ => t(‘Hello world’),
),
);
 break;
 }
 return $block;
}
?>

Here’s an example of a typical way in which you define “pluggable

thingies” in Drupal (blocks, image effects, text formats, and so on): some

kind of _info() hook, along with one or more other hooks to perform

additional actions (view, apply, configure, and more). In addition to these

largely being ArrayPIs, this time they’re actually even worse “mystery

meat” APIs, because the overall API itself is completely undiscoverable

except by very careful inspection of various modules’ ​.api.php files

(provided they exist, which is not a guarantee) to discover which

magically named hooks you need to define to implement this or that

behavior. Some are required, some aren’t. Can you guess which is

which?

34 Acquia.com​ ​|​ 888.922.7842

https://api.drupal.org/api/drupal/modules%21block%21block.api.php/7

Drupal 8: ​Blocks (and many other things) as
Plugins

In Drupal 8, these “mystery meat” APIs have now largely been replaced by

the new ​Plugin system​, which looks something like this:

src/Plugin/Block/Example.php

<?php
namespace Drupal\example\Plugin\Block;
use Drupal\Core\Block\BlockBase;
/**
 * Provides the Example block.
 *
 * @Block(
 * id = “example”,
 * admin_label = @Translation(“Example block”)
 *)
 */
class Example extends BlockBase {
 public function build() {
 return array(‘hello’ => array(
 ‘#markup’ => $this->t(‘Hello world.’)
));
 }
}
?>

Most of this is very similar to the Controller example; a plugin is a class

that in this case extends from a base class (​BlockBase​) that takes care of

some underlying things for you. The Block API itself is housed in the

BlockPluginInterface​, which the BlockBase class implements.

Note that interfaces in general expose and document various APIs in a

discoverable and IDE-friendly way. A great way to learn about the new APIs

in Drupal 8 is by browsing through the interfaces that are provided.

The comments above the class are called ​annotations​. At first it might seem

strange for PHP comments to be used for specifying metadata that affects

the logic of the software, but this technique is now widely used by many

modern PHP libraries and accepted by the PHP community. Its benefit is

that it keeps the class metadata in the same file as and right next to the

class definition.

35 Acquia.com​ ​|​ 888.922.7842

https://drupal.org/developing/api/8/plugins
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Block!BlockBase.php/class/BlockBase/8
https://api.drupal.org/api/drupal/core!lib!Drupal!Core!Block!BlockBase.php/class/BlockBase/8
http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.htm

Drupal 7: ​Hooks

In Drupal 7 and earlier, the extension mechanism used is the concept of

hooks​. As an API author, you can declare a hook using functions like

module_invoke_all(), module_implements(), drupal_alter(), and so on.

For example:

 <?php
 // Compile a list of permissions from all modules for
 // display on admin form.
 foreach (module_implements(‘permission’) as $module) {
 $modules[$module] = $module_info[$module][‘name’];
 }
?>

If you wanted a module to respond to this event, you would create a

function named modulename_hookname(), and declare its output in a way

that the hook implementation expected. For example:

<?php
/**
 * Implements hook_permission().
 */
function menu_permission() {
 return array(
 ‘administer menu’ => array(
 ‘title’ => t(‘Administer menus and menu items’),
),
);
}
?>

Although this is a clever extension hack that is mostly the result of

Drupal’s age (from back in 2001 when Drupal was new and when there

was little support for OO code in PHP3), there are several tricky bits:

- This “name a function in a special way” extension mechanism is very

much

a Drupalism, and developers coming to Drupal struggle to understand

it at first.

- At least four different functions can trigger a hook: ​module_invoke(),

module_invoke_all(), module_implements(), drupal_alter(), ​ and

more.

This makes finding all the available extension points in Drupal very

difficult.

- There is no consistency between what various hooks expect. Some

are info style hooks that want an array (sometimes an array of arrays

of arrays of arrays), others are info-style hooks that respond when a

particular thing happens like cron run or a node is saved. You need to

read the documentation of each hook to understand what input and

output it expects.

36 Acquia.com​ ​|​ 888.922.7842

https://api.drupal.org/api/drupal/includes%21module.inc/group/hooks/7

Drupal 8: ​Events

Although hooks are definitely still prevalent in Drupal 8 for most event-driven

behavior (though info-style hooks have largely moved to YAML or Plugin

annotations), the portions of Drupal 8 that are more closely aligned to

Symfony (for example, bootstrap/exit, routing system) as well as brand new

code in Drupal 8 like Migrate have largely moved to ​Symfony’s Event

Dispatcher ​system. In this system, events are dispatched at runtime when

certain logic occurs, and modules can subscribe classes to the events to

which they want to react.

To demonstrate this, let’s take a look at Drupal 8’s configuration API, located

in ​core/lib/Drupal/Core/Config/Config.php​. It defines a variety of CRUD

methods such as save(), delete(), and so on. Each method dispatches an

event when finished with its work, so other modules can react. For example,

here’s Config::save():

<?php
 public function save() {
 // <snip>Validate the incoming information.</snip>
 // Save data to Drupal, then tell other modules this was
// just done so they can react.
 $this->storage->write($this->name, $this->data);
 // ConfigCrudEvent is a class that extends from Symfony’s
 // “Event” base class.
 $this->eventDispatcher->dispatch(ConfigEvents::SAVE, new
ConfigCrudEvent($this));
 }
?>

As it turns out, at least one module needs to react when the configuration is

saved: the core Language module. Because if the configuration setting that

was just changed was the default site language, it needs to clear out compiled

PHP files so the change can take effect.

To do this, Language module does three things:

1. Registers an event subscriber class in its language.services.yml file (this is

a configuration file for the Symfony Service Container for registering

reusable code):

 language.config_subscriber:
 class: Drupal\language\EventSubscriber\ConfigSubscriber
 tags:
 - { name: event_subscriber }

2. In the ​referenced class​, it implements the ​EventSubscriberInterface​ and

declares a getSubscribedEvents() method, which itemizes the events that it

should be alerted to and provides each with one or more callbacks that

should be triggered when the event happens, along with a “weight” to

ensure certain modules that need to can get the first/last crack at the

object can (heads-up: Symfony’s priority scoring is the opposite of

Drupal’s weight system—higher-numbered methods are called first):

 <?php
 class ConfigSubscriber implements EventSubscriberInterface {
 static function getSubscribedEvents() {
 $events[ConfigEvents::SAVE][] = array(‘onConfigSave’, 0);
 return $events;

}
 }
 ?>

37 Acquia.com​ ​|​ 888.922.7842

http://symfony.com/doc/current/components/event_dispatcher/introduction.html
http://symfony.com/doc/current/components/event_dispatcher/introduction.html
https://api.drupal.org/api/drupal/core%21lib%21Drupal%21Core%21Config%21Config.php/class/Config/8%20l
https://api.drupal.org/api/drupal/core%21modules%21language%21src%21EventSubscriber%21ConfigSubscriber.php/class/ConfigSubscriber/8
http://api.symfony.com/2.4/Symfony/Component/EventDispatcher/EventSubscriberInterface.html

3.Defines the callback method, which contains the logic that should

happen when the configuration is saved:

<?php
 public function save() {
 // <snip>Validate the incoming information.</snip>
 // Save data to Drupal, then tell other modules this was
// just done so they can react.
 $this->storage->write($this->name, $this->data);
 // ConfigCrudEvent is a class that extends from Symfony’s
 // “Event” base class.
 $this->eventDispatcher->dispatch(ConfigEvents::SAVE, new
ConfigCrudEvent($this));
 }
?>

Overall, this buys us a more explicit registration utility so that a single

module can subscribe multiple classes to individual events. This allows us to

avoid situations in the past where we had switch statements in hooks or

multiple unrelated sets of logic competing for the developer’s attention in a

single code block. Instead, this provides the ability to separate logic into

separate and distinct classes. This also means that our event logic is lazy

loaded when it needs to be executed, not just sitting in PHP’s memory at all

times.

Debugging events and finding their implementations is also pretty

straightforward. Instead of a handful of procedural PHP functions that may

or may not have been used to call your hook, the same Event

Dispatcher is used throughout the system. In addition to this, finding

implementations is as simple as grepping for the appropriate Class

Constant, for example, ConfigEvents::SAVE.

Logically, the event system rounds out the transition to an OO approach.

Plugins handle info-style hooks and hooks that were called subsequent to

an info hook. YAML takes the place of many of our explicit registration

systems of old, and the event system covers event-style hooks and

introduces a powerful subscription methodology for extending portions of

Drupal core.

… and much, much more!
You can find a great introduction to Drupal 8’s API changes at the

revamped D8 landing page of​ api.drupal.org​ where you’ll find a list of

grouped topics to orient you to Drupal 8.

38 Acquia.com​ ​|​ 888.922.7842

https://api.drupal.org/api/drupal/8

You can also see ​https://drupal.org/list-changes​ for the full list of API changes

between Drupal 7 and Drupal 8. Each API change record includes before/after code

examples to help you migrate, as well as pointers to which issue(s) introduced the

change and why.

So Much Typing

It’s true that moving to modern, OO code generally involves more verbosity than

procedural code. To help you over the hurdles, check out the following projects:

- Drupal Module Upgrader​: If you’re looking to port your modules from Drupal 7

to Drupal 8, look no further than this project. It can either tell you what you

need to change (with pointers to the relevant change notices) or automatically

convert your code in-place to Drupal 8. You can learn more about DMU in this

podcast interview with the maintainer​.
- Console​: For new modules, this project is a Drupal 8 scaffolding code generator that will automatically generate .module/.info files, PSR-4 directory

structures, YAML, and class registrations for routes, and more! Learn more about the Drupal Console in this webinar with Jesus Olivas.

- Most Drupal 8 core developers swear by the ​PhpStorm IDE​, and the latest version has lots of ​great features for Drupal developers​. If you’re one of the

top contributors to the Drupal ecosystem, you can ​get it for free​! (Note that this isn’t product placement. You should join #drupal-contribute at any time

of the day or night and see if you can go longer than an hour without someone mentioning PhpStorm.

39 Acquia.com​ ​|​ 888.922.7842

https://drupal.org/list-changes
https://www.drupal.org/project/drupalmoduleupgrader
https://www.acquia.com/resources/podcasts/acquia-podcast-154-help-build-drupal-8-module-upgrader
https://www.drupal.org/project/console
http://www.jetbrains.com/phpstorm
http://confluence.jetbrains.com/display/PhpStorm/Drupal+Development+using+PhpStorm
https://assoc.drupal.org/node/18548

Your Burning Questions
When should I start using Drupal 8? What do I need to do to upgrade? I have so many questions.

Why Should I Care about Drupal 8?
Drupal started first and foremost as a tool for developers and provided a set of APIs to allow building website elements in code, such as content entry forms,

admin pages, and sidebar blocks. In later releases of Drupal, and particularly in Drupal 7, the emphasis was on making Drupal approachable for less

technical users, providing user interfaces for foundational tasks (installation, data modeling, information architecture, landing pages, and so on). Most Drupal

sites today download and configure a number of contributed projects for features such as a WYSIWYG editor, Views, and so on. And with that combination

of core + contributed functionality, Drupal runs ​some of the biggest and most important sites on the web.

Drupal 8 builds on the success of Drupal 7’s approach by incorporating more expected “product” functionality out-of-the-box, such as authoring experience

improvements, complete multilingual functionality, and numerous site builder features like the Settings Tray module and the Place Block module and more.

Drupal 8 is more in line with the web landscape of today, with its mobile-first approach and revamped front-end. And, true to its developer roots, it offers

numerous back-end features and modernized, OO code base. All around, Drupal 8 is a more powerful release with capabilities for content authors, site

builders, developers, and designers alike.

How does Drupal’s release cycle work now
Starting with Drupal 8.0.0, the Drupal project has moved to a new release cycle, which in addition to standard monthly bug fix and security releases (8.0.1,

8.0.2...) introduces semi-annual minor releases of core (8.1.0, 8.2.0, and so on). These releases can include new features, backward-compatible API

improvements, and more. After several minor versions, a “Long-Term Support” (LTS) release of Drupal 8 will be created and Drupal 9 development will begin.

This means Drupalists will no longer have to wait years for new core functionality; we can iterate on features and APIs every few months until the platform

reaches maturity. It also means that those who are more risk-averse and want stability over shiny things can stick to LTS releases and only move every

several years (even leap-frogging major versions). Hooray!

40 Acquia.com​ ​|​ 888.922.7842

http://www.drupalshowcase.com/

When Should I Actually Start Using Drupal 8?
The answer to that depends on who you are:

- If you’re a module developer, you need to get your module updated to

Drupal 8 ASAP. Each day, more Drupal 7 modules are being migrated

over to Drupal 8 and new ones are being created for D8. The more

solutions and functionality we have ready, the better off we will all be in

the Drupal community.

- If you’re a documentation author, translator, or designer, you can make

an impact by working on user-facing documentation, translations, and

themes.

It’s a great time to start a Drupal 8 project. ​As of the release of Drupal 8.2,

lots of Drupal 8 sites are online and a number of large Drupal 8 projects are

underway. Many contributed modules necessary for complex projects have

been released, upgraded for the new platform, and new ones are appearing

every day.

So if I choose Drupal 7 now … ?
Drupal 7 is still a stable, mature, robust, powerful, well-supported

framework that will be maintained with bug fixes until after the LTS release

of Drupal 8. It will be covered for official security fixes until Drupal 9’s LTS

release (several years from now). And a number of the great features in

Drupal 8 are available in Drupal 7 as well, with contributed modules.

However, you can expect most new functionality in contrib will soon only

be released for Drupal 8, so you should factor that into your decision.

If you want to make the conservative choice for starting your Drupal 8

project, keep your eyes on the ​Drupal project usage graph​. When the D7

and D8 lines cross, it’ll be a good time for you to make the jump, because it

means there will be more D8 than D7 sites, so most of the hard work will

have been been done for you already.

Drupal 8 Core Feature Drupal 7 Contrib Equivalen​t

WYSIWYG CKEditor

In-Place Editing Quick Edit

Responsive Toolbar Mobile Friendly Navigation Toolbar

Responsive Front-End Theme Omega, Zen, Adaptive, Aurora, etc. base
themes

Responsive Admin Theme Ember

Responsive Images Picture

Responsive Tables Responsive Tables

Simplified Overlay Escape Admin

Multilingual Internationalization
Entity Translation
(and several additional modules)

Better Blocks Bean

Configuration
Management

Features
(provides exportable files that can be used
in deployments)

Web Services RESTful Web Services

41 Acquia.com​ ​|​ 888.922.7842

https://www.drupal.org/project/usage/drupal
https://drupal.org/project/ckeditor
https://drupal.org/project/quickedit
https://drupal.org/project/navbar
https://drupal.org/project/ember
https://drupal.org/project/picture
https://drupal.org/project/responsive_tables
https://drupal.org/project/escape_admin
https://drupal.org/project/i18n
https://drupal.org/project/entity_translation
https://drupal.org/project/bean
https://drupal.org/project/features
https://drupal.org/project/restws

What about the Upgrade Path?
Oh you had to ask, didn’t you?

- For your site’s content (users, articles, and so on) and many configuration

settings (variables, block settings, and so on), Drupal 8 provides a

migration path​ from both Drupal 6 (already in core) and Drupal 7

(currently under construction) to Drupal 8 that will cover core modules.

(Contributed and custom modules will need to write their own migration

path to cover their data.) Basically, you’ll keep your Drupal 6/7 site

running while you build your Drupal 8 site and then run a script similar to

the current update.php to move its contents over. When things look

good, swap out the web roots. Almost no downtime!

- For your site’s contributed modules, download and install the 7.x version

of the ​Upgrade Status​ module, which shows a handy overview of your

module’s site and the current D8 porting status.

- For your site’s custom modules, you need to port those yourself. The

Drupal Module Upgrader​ project can help automate some of this and

generate a report of other things to change. (However, it is not

omniscient, so you will still need to fix some things by hand.)

- For your site’s custom theme, which must be converted to Twig, check

the ​Twigify​ project that attempts to automate some of this work.

So, in short, your upgrade path depends a lot on the specifics of your site

and how it’s put together. In general, you’ll have a much easier time moving

to Drupal 8 if you’ve stuck to well-vetted contributed modules over custom

code. If possible, make your plans accordingly.

For other tips on making your Drupal 6/7 site Drupal 8 ready, check out

Getting your site ready for Drupal 8​ on the Acquia Developer Portal.

How Can I Help?
Want Drupal 8 to be even better? It can be, with your help.

- The most direct way is to help ​fix critical issues​. Keep your eyes posted on

Drupal Core Updates​, which always has the latest spots that need

particular attention.

- If you’re new to Drupal core development, or want a pointer to some useful

things to work on by a real person, check out ​core mentoring hours

twice-weekly on IRC.

- Want to help with the Drupal 8 migration path? Check out the IMP (​Migrate

in core​) team.

- Want to help with the Drupal 8 documentation? Check out the

Current documentation priorities​.
- Want to learn Drupal 8 APIs and help other developers in the process?

- Help port ​Examples for Developers​ to Drupal 8.

- Want to save yourself and others lots of time porting modules? Help write

Drupal Module Upgrader​ routines.

Thank you!
Let’s give a virtual round of applause to ​more than 3,500 contributors

to Drupal 8 so far​! ​Now, join them​!

42 Acquia.com​ ​|​ 888.922.7842

https://www.acquia.com/blog/d8migrate
https://drupal.org/project/upgrade_status
https://www.drupal.org/project/drupalmoduleupgrader
https://www.drupal.org/project/twigify
http://www.acquia.com/blog/getting-your-site-ready-drupal-8
https://drupal.org/project/issues/search/drupal?status%5b%5d=Open&priorities%5b%5d=400&categories%5b%5d=1&categories%5b%5d=2&version%5b%5d=8.x&issue_tags_op=%3D
https://groups.drupal.org/core/twidc
https://drupal.org/core-office-hours
http://groups.drupal.org/imp
http://groups.drupal.org/imp
https://drupal.org/node/1005304
https://drupal.org/project/drupalmoduleupgrader
https://drupal.org/project/drupalmoduleupgrader
http://ericduran.github.io/drupalcores
http://ericduran.github.io/drupalcores
https://www.drupal.org/core-office-hours

